"tests/vscode:/vscode.git/clone" did not exist on "1d3d63abb70c5fa451ac019050cfafa0037d29dc"
gemm_xdl_fp16.cpp 10.1 KB
Newer Older
1
2
3
4
5
6
#include <iostream>
#include <numeric>
#include <initializer_list>
#include <cstdlib>
#include <stdlib.h>
#include <half.hpp>
7
8

#include "check_err.hpp"
9
10
11
12
13
#include "config.hpp"
#include "device.hpp"
#include "host_tensor.hpp"
#include "host_tensor_generator.hpp"
#include "device_tensor.hpp"
Chao Liu's avatar
Chao Liu committed
14
#include "device_gemm_xdl.hpp"
rocking5566's avatar
rocking5566 committed
15
#include "device_gemm_xdl_c_shuffle.hpp"
Chao Liu's avatar
Chao Liu committed
16
#include "device_gemm_xdl_cshuffle.hpp"
Chao Liu's avatar
Chao Liu committed
17
#include "element_wise_operation.hpp"
Chao Liu's avatar
Chao Liu committed
18
#include "reference_gemm.hpp"
Chao Liu's avatar
Chao Liu committed
19
#include "gemm_specialization.hpp"
Chao Liu's avatar
Chao Liu committed
20

Chao Liu's avatar
Chao Liu committed
21
22
23
template <ck::index_t... Is>
using S = ck::Sequence<Is...>;

Chao Liu's avatar
Chao Liu committed
24
25
26
27
28
29
30
31
using F16 = ck::half_t;
using F32 = float;

using Row = ck::tensor_layout::gemm::RowMajor;
using Col = ck::tensor_layout::gemm::ColumnMajor;

using PassThrough = ck::tensor_operation::element_wise::PassThrough;

Chao Liu's avatar
Chao Liu committed
32
33
34
35
36
37
38
39
40
using ADataType   = ck::half_t;
using BDataType   = ck::half_t;
using CDataType   = ck::half_t;
using AccDataType = float;

using ALayout = ck::tensor_layout::gemm::RowMajor;
using BLayout = ck::tensor_layout::gemm::ColumnMajor;
using CLayout = ck::tensor_layout::gemm::RowMajor;

Chao Liu's avatar
Chao Liu committed
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
struct Relu
{
    __host__ __device__ constexpr void operator()(float& y, const float& x) const
    {
        const float a = x;
        y             = a > 0 ? a : 0;
    }

    __host__ __device__ constexpr void operator()(ck::half_t& y, const ck::half_t& x) const
    {
        const ck::half_t a = x;
        y                  = a > 0 ? a : 0;
    }
};

struct Hardswish
{
    __host__ __device__ constexpr void operator()(float& y, const float& x) const
    {
        float a = x;
        float b = a + float{3};
        float c = (b > 0) * (b > float{6} ? float{6} : b) * a * float{0.166667};
        y       = c;
    }

    __host__ __device__ constexpr void operator()(ck::half_t& y, const ck::half_t& x) const
    {
        float a = x;
        float b = a + float{3};
        float c = (b > 0) * (b > float{6} ? float{6} : b) * a * float{0.166667};
        y       = c;
    }
};

using AElementOp = Relu;
Chao Liu's avatar
Chao Liu committed
76
using BElementOp = ck::tensor_operation::element_wise::PassThrough;
Chao Liu's avatar
Chao Liu committed
77
using CElementOp = Hardswish;
Chao Liu's avatar
Chao Liu committed
78

79
static constexpr auto GemmDefault = ck::tensor_operation::device::GemmSpecialization::Default;
Chao Liu's avatar
Chao Liu committed
80

Chao Liu's avatar
Chao Liu committed
81
// clang-format off
Chao Liu's avatar
Chao Liu committed
82
83
84
85
86
87
using DeviceGemmInstance = ck::tensor_operation::device::DeviceGemm_Xdl_CShuffle
//######| ALayout| BLayout| CLayout|AData| BData| CData|  GemmAcc| CShuffle|           A|           B|           C|           GEMM| NumGemmK| Block|  MPer|  NPer|  KPer| AK1| BK1| MPer| NPer| MXdl| NXdl|  ABlockTransfer| ABlockTransfer| ABlockTransfer| ABlockTransfer| ABlockTransfer| ABlockTransfer| ABlockLds|  BBlockTransfer| BBlockTransfer| BBlockTransfer| BlockTransfer| BBlockTransfer| BBlockTransfer| BBlockLds|    CShuffle|    CShuffle| CBlockTransferClusterLengths|  CBlockTransfer|
//######|        |        |        | Type|  Type|  Type| DataType| DataType| Elementwise| Elementwise| Elementwise| Spacialization| Prefetch|  Size| Block| Block| Block|    |    |  XDL|  XDL|  Per|  Per|   ThreadCluster|  ThreadCluster| SrcAccessOrder|   SrcVectorDim|      SrcScalar|      DstScalar|    ExtraM|   ThreadCluster|  ThreadCluster| SrcAccessOrder|  SrcVectorDim|      SrcScalar|      DstScalar|    ExtraN| MXdlPerWave| NXdlPerWave|            _MBlock_MPerBlock| ScalarPerVector|
//######|        |        |        |     |      |      |         |         |   Operation|   Operation|   Operation|               |    Stage|      |      |      |      |    |    |     |     | Wave| Wave| Lengths_K0_M_K1|   ArrangeOrder|               |               |      PerVector|   PerVector_K1|          | Lengths_K0_N_K1|   ArrangeOrder|               |              |      PerVector|   PerVector_K1|          |  PerShuffle|  PerShuffle|            _NBlock_NPerBlock|      _NPerBlock|
//######|        |        |        |     |      |      |         |         |            |            |            |               |         |      |      |      |      |    |    |     |     |     |     |                |               |               |               |               |               |          |                |               |               |              |               |               |          |            |            |                             |                |
        <     Row,     Col,     Row,  F16,   F16,   F16,      F32,      F32,  AElementOp,  BElementOp,  CElementOp,    GemmDefault,        1,   256,   256,   128,    32,   8,   8,   32,   32,    4,    2,     S<4, 64, 1>,     S<1, 0, 2>,     S<1, 0, 2>,              2,              8,              8,         1,     S<4, 64, 1>,     S<1, 0, 2>,     S<1, 0, 2>,             2,              8,              8,         1,           1,           1,               S<1, 32, 1, 8>,               8>;
Chao Liu's avatar
Chao Liu committed
88
89
// clang-format on

Chao Liu's avatar
Chao Liu committed
90
91
using ReferenceGemmInstance = ck::tensor_operation::host::
    ReferenceGemm<ADataType, BDataType, CDataType, AElementOp, BElementOp, CElementOp>;
92
93
94

int main(int argc, char* argv[])
{
Chao Liu's avatar
Chao Liu committed
95
96
97
    bool do_verification = 0;
    int init_method      = 0;
    int nrepeat          = 5;
98
99
100
101
102
103
104
105
106
107

    // GEMM shape
    ck::index_t M = 3840;
    ck::index_t N = 4096;
    ck::index_t K = 4096;

    ck::index_t StrideA = 4096;
    ck::index_t StrideB = 4096;
    ck::index_t StrideC = 4096;

Chao Liu's avatar
Chao Liu committed
108
109
    if(argc == 4)
    {
110
111
112
        do_verification = std::stoi(argv[1]);
        init_method     = std::stoi(argv[2]);
        nrepeat         = std::stoi(argv[3]);
Chao Liu's avatar
Chao Liu committed
113
114
115
116
117
118
119
120
121
122
    }
    else if(argc == 10)
    {
        do_verification = std::stoi(argv[1]);
        init_method     = std::stoi(argv[2]);
        nrepeat         = std::stoi(argv[3]);

        M = std::stoi(argv[4]);
        N = std::stoi(argv[5]);
        K = std::stoi(argv[6]);
123

Chao Liu's avatar
Chao Liu committed
124
125
126
127
128
129
130
131
132
133
134
135
        StrideA = std::stoi(argv[7]);
        StrideB = std::stoi(argv[8]);
        StrideC = std::stoi(argv[9]);
    }
    else
    {
        printf("arg1: verification (0=no, 1=yes)\n");
        printf("arg2: initialization (0=no init, 1=integer value, 2=decimal value)\n");
        printf("arg3: run kernel # of times (>1)\n");
        printf("arg4 to 9: M (256x), N(128x), K(32x), StrideA, StrideB, StrideC\n");
        exit(0);
    }
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152

    auto f_host_tensor_descriptor =
        [](std::size_t row, std::size_t col, std::size_t stride, auto layout) {
            if(std::is_same<decltype(layout), ck::tensor_layout::gemm::RowMajor>::value)
            {
                return HostTensorDescriptor(std::vector<std::size_t>({row, col}),
                                            std::vector<std::size_t>({stride, 1}));
            }
            else
            {
                return HostTensorDescriptor(std::vector<std::size_t>({row, col}),
                                            std::vector<std::size_t>({1, stride}));
            }
        };

    Tensor<ADataType> a_m_k(f_host_tensor_descriptor(M, K, StrideA, ALayout{}));
    Tensor<BDataType> b_k_n(f_host_tensor_descriptor(K, N, StrideB, BLayout{}));
153
154
    Tensor<CDataType> c_m_n_host_result(f_host_tensor_descriptor(M, N, StrideC, CLayout{}));
    Tensor<CDataType> c_m_n_device_result(f_host_tensor_descriptor(M, N, StrideC, CLayout{}));
155
156
157
158
159
160
161
162
163

    std::cout << "a_m_k: " << a_m_k.mDesc << std::endl;
    std::cout << "b_k_n: " << b_k_n.mDesc << std::endl;
    std::cout << "c_m_n: " << c_m_n_host_result.mDesc << std::endl;

    switch(init_method)
    {
    case 0: break;
    case 1:
164
165
        a_m_k.GenerateTensorValue(GeneratorTensor_2<ADataType>{-5, 5});
        b_k_n.GenerateTensorValue(GeneratorTensor_2<BDataType>{-5, 5});
166
        break;
167
    case 2:
168
169
        a_m_k.GenerateTensorValue(GeneratorTensor_3<ADataType>{0.0, 1.0});
        b_k_n.GenerateTensorValue(GeneratorTensor_3<BDataType>{-0.5, 0.5});
170
171
172
173
        break;
    default:
        a_m_k.GenerateTensorValue(GeneratorTensor_Sequential<0>{});
        b_k_n.GenerateTensorValue(GeneratorTensor_Sequential<1>{});
174
175
176
177
178
179
180
181
182
    }

    DeviceMem a_m_k_device_buf(sizeof(ADataType) * a_m_k.mDesc.GetElementSpace());
    DeviceMem b_k_n_device_buf(sizeof(BDataType) * b_k_n.mDesc.GetElementSpace());
    DeviceMem c_m_n_device_buf(sizeof(CDataType) * c_m_n_device_result.mDesc.GetElementSpace());

    a_m_k_device_buf.ToDevice(a_m_k.mData.data());
    b_k_n_device_buf.ToDevice(b_k_n.mData.data());

Chao Liu's avatar
Chao Liu committed
183
184
185
186
    auto a_element_op = AElementOp{};
    auto b_element_op = BElementOp{};
    auto c_element_op = CElementOp{};

187
    // do GEMM
Chao Liu's avatar
Chao Liu committed
188
    auto gemm     = DeviceGemmInstance{};
189
190
191
192
193
194
195
196
197
    auto invoker  = gemm.MakeInvoker();
    auto argument = gemm.MakeArgument(static_cast<ADataType*>(a_m_k_device_buf.GetDeviceBuffer()),
                                      static_cast<BDataType*>(b_k_n_device_buf.GetDeviceBuffer()),
                                      static_cast<CDataType*>(c_m_n_device_buf.GetDeviceBuffer()),
                                      M,
                                      N,
                                      K,
                                      StrideA,
                                      StrideB,
Chao Liu's avatar
Chao Liu committed
198
                                      StrideC,
Chao Liu's avatar
Chao Liu committed
199
200
201
                                      a_element_op,
                                      b_element_op,
                                      c_element_op);
202
203
204
205
206
207
208
209

    if(!gemm.IsSupportedArgument(argument))
    {
        throw std::runtime_error(
            "wrong! device_gemm with the specified compilation parameters does "
            "not support this GEMM problem");
    }

210
    float ave_time = invoker.Run(argument, nrepeat);
211
212
213

    std::size_t flop = std::size_t(2) * M * N * K;
    std::size_t num_btype =
Chao Liu's avatar
Chao Liu committed
214
        sizeof(ADataType) * M * K + sizeof(BDataType) * K * N + sizeof(CDataType) * M * N;
215
216
217
218
219

    float tflops = static_cast<float>(flop) / 1.E9 / ave_time;

    float gb_per_sec = num_btype / 1.E6 / ave_time;

Chao Liu's avatar
Chao Liu committed
220
221
    std::cout << "Perf: " << ave_time << " ms, " << tflops << " TFlops, " << gb_per_sec << " GB/s, "
              << gemm.GetTypeString() << std::endl;
222
223
224
225
226

    c_m_n_device_buf.FromDevice(c_m_n_device_result.mData.data());

    if(do_verification)
    {
Chao Liu's avatar
Chao Liu committed
227
228
229
230
231
232
233
        auto ref_gemm    = ReferenceGemmInstance{};
        auto ref_invoker = ref_gemm.MakeInvoker();

        auto ref_argument = ref_gemm.MakeArgument(
            a_m_k, b_k_n, c_m_n_host_result, a_element_op, b_element_op, c_element_op);

        ref_invoker.Run(ref_argument);
234

235
        ck::utils::check_err(c_m_n_device_result.mData, c_m_n_host_result.mData);
236
    }
Jianfeng Yan's avatar
Jianfeng Yan committed
237
238

    return 0;
239
}