profile_convnd_bwd_data_impl.hpp 18.2 KB
Newer Older
Chao Liu's avatar
Chao Liu committed
1
2
3
// SPDX-License-Identifier: MIT
// Copyright (c) 2018-2022, Advanced Micro Devices, Inc. All rights reserved.

4
#pragma once
Chao Liu's avatar
Chao Liu committed
5
6
7
8
9
10
11
12
13
14
15

#include "ck/ck.hpp"
#include "ck/tensor_operation/gpu/device/tensor_layout.hpp"
#include "ck/tensor_operation/gpu/device/device_conv_bwd_data.hpp"
#include "ck/tensor_operation/gpu/element/element_wise_operation.hpp"

#include "ck/library/utility/conv_util.hpp"
#include "ck/library/host_tensor/device_memory.hpp"
#include "ck/library/host_tensor/host_tensor.hpp"
#include "ck/library/host_tensor/host_tensor_generator.hpp"
#include "ck/library/reference_tensor_operation/cpu/reference_conv_bwd_data.hpp"
16
17
18

using F16  = ck::half_t;
using F32  = float;
19
using BF16 = ck::bhalf_t;
20
using INT8 = int8_t;
Chao Liu's avatar
Chao Liu committed
21

22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
namespace ck {
namespace tensor_operation {
namespace device {
namespace device_conv2d_bwd_data_instance {

using DeviceConvBwdDataNoOpPtr =
    DeviceConvBwdDataPtr<ck::tensor_operation::element_wise::PassThrough,
                         ck::tensor_operation::element_wise::PassThrough,
                         ck::tensor_operation::element_wise::PassThrough>;
void add_device_conv1d_bwd_data_xdl_nwc_kxc_nwk_f32_instances(
    std::vector<DeviceConvBwdDataNoOpPtr>&);
void add_device_conv1d_bwd_data_xdl_nwc_kxc_nwk_f16_instances(
    std::vector<DeviceConvBwdDataNoOpPtr>&);
void add_device_conv1d_bwd_data_xdl_nwc_kxc_nwk_bf16_instances(
    std::vector<DeviceConvBwdDataNoOpPtr>&);
void add_device_conv1d_bwd_data_xdl_nwc_kxc_nwk_int8_instances(
    std::vector<DeviceConvBwdDataNoOpPtr>&);

void add_device_conv2d_bwd_data_xdl_nhwc_kyxc_nhwk_f32_instances(
    std::vector<DeviceConvBwdDataNoOpPtr>&);
void add_device_conv2d_bwd_data_xdl_nhwc_kyxc_nhwk_f16_instances(
    std::vector<DeviceConvBwdDataNoOpPtr>&);
void add_device_conv2d_bwd_data_xdl_nhwc_kyxc_nhwk_bf16_instances(
    std::vector<DeviceConvBwdDataNoOpPtr>&);
void add_device_conv2d_bwd_data_xdl_nhwc_kyxc_nhwk_int8_instances(
    std::vector<DeviceConvBwdDataNoOpPtr>&);

void add_device_conv3d_bwd_data_xdl_ndhwc_kzyxc_ndhwk_f32_instances(
    std::vector<DeviceConvBwdDataNoOpPtr>&);
void add_device_conv3d_bwd_data_xdl_ndhwc_kzyxc_ndhwk_f16_instances(
    std::vector<DeviceConvBwdDataNoOpPtr>&);
void add_device_conv3d_bwd_data_xdl_ndhwc_kzyxc_ndhwk_bf16_instances(
    std::vector<DeviceConvBwdDataNoOpPtr>&);
void add_device_conv3d_bwd_data_xdl_ndhwc_kzyxc_ndhwk_int8_instances(
    std::vector<DeviceConvBwdDataNoOpPtr>&);
} // namespace device_conv2d_bwd_data_instance
} // namespace device
} // namespace tensor_operation
} // namespace ck

namespace ck {
namespace profiler {
using DeviceConvBwdDataNoOpPtr =
    ck::tensor_operation::device::device_conv2d_bwd_data_instance::DeviceConvBwdDataNoOpPtr;

template <typename InLayout>
HostTensorDescriptor get_input_host_tensor_descriptor(const std::vector<std::size_t>& dims,
                                                      int num_dim_spatial = 2)
{
    namespace tl = ck::tensor_layout::convolution;

    switch(num_dim_spatial)
    {
    case 3: {
76
        return ck::utils::conv::get_host_tensor_descriptor(dims, InLayout{});
77
78
    }
    case 2: {
79
        return ck::utils::conv::get_host_tensor_descriptor(dims, InLayout{});
80
81
    }
    case 1: {
82
        return ck::utils::conv::get_host_tensor_descriptor(dims, InLayout{});
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
    }
    default: {
        throw std::runtime_error("Unsupported number of spatial dimensions provided!");
    }
    }
}
template <typename WeiLayout>
HostTensorDescriptor get_filters_host_tensor_descriptor(const std::vector<std::size_t>& dims,
                                                        int num_dim_spatial = 2)
{
    namespace tl = ck::tensor_layout::convolution;

    switch(num_dim_spatial)
    {
    case 3: {
98
        return ck::utils::conv::get_host_tensor_descriptor(dims, WeiLayout{});
99
100
    }
    case 2: {
101
        return ck::utils::conv::get_host_tensor_descriptor(dims, WeiLayout{});
102
103
    }
    case 1: {
104
        return ck::utils::conv::get_host_tensor_descriptor(dims, WeiLayout{});
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
    }
    default: {
        throw std::runtime_error("Unsupported number of spatial dimensions provided!");
    }
    }
}
template <typename OutLayout>
HostTensorDescriptor get_output_host_ensor_descriptor(const std::vector<std::size_t>& dims,
                                                      int num_dim_spatial = 2)
{
    namespace tl = ck::tensor_layout::convolution;

    switch(num_dim_spatial)
    {
    case 3: {
120
        return ck::utils::conv::get_host_tensor_descriptor(dims, OutLayout{});
121
122
    }
    case 2: {
123
        return ck::utils::conv::get_host_tensor_descriptor(dims, OutLayout{});
124
125
    }
    case 1: {
126
        return ck::utils::conv::get_host_tensor_descriptor(dims, OutLayout{});
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
    }
    default: {
        throw std::runtime_error("Unsupported number of spatial dimensions provided!");
    }
    }
}
template <typename InDataType, typename WeiDataType, typename OutDataType>
void get_device_conv_bwd_data_op_ptr(
    InDataType, WeiDataType, OutDataType, std::vector<DeviceConvBwdDataNoOpPtr>&, int)
{
    std::cout << "can not find device conv bwd data" << std::endl;
    exit(1);
}
template <>
void get_device_conv_bwd_data_op_ptr(
    F32, F32, F32, std::vector<DeviceConvBwdDataNoOpPtr>& conv_ptrs, int num_dim_spatial)
{
    switch(num_dim_spatial)
    {
    case 1:
        ck::tensor_operation::device::device_conv2d_bwd_data_instance::
            add_device_conv1d_bwd_data_xdl_nwc_kxc_nwk_f32_instances(conv_ptrs);
        break;
    case 2:
        ck::tensor_operation::device::device_conv2d_bwd_data_instance::
            add_device_conv2d_bwd_data_xdl_nhwc_kyxc_nhwk_f32_instances(conv_ptrs);
        break;
    case 3:
        ck::tensor_operation::device::device_conv2d_bwd_data_instance::
            add_device_conv3d_bwd_data_xdl_ndhwc_kzyxc_ndhwk_f32_instances(conv_ptrs);
        break;
    default: break;
    }
}
template <>
void get_device_conv_bwd_data_op_ptr(
    F16, F16, F16, std::vector<DeviceConvBwdDataNoOpPtr>& conv_ptrs, int num_dim_spatial)
{
    switch(num_dim_spatial)
    {
    case 1:
        ck::tensor_operation::device::device_conv2d_bwd_data_instance::
            add_device_conv1d_bwd_data_xdl_nwc_kxc_nwk_f16_instances(conv_ptrs);
        break;
    case 2:
        ck::tensor_operation::device::device_conv2d_bwd_data_instance::
            add_device_conv2d_bwd_data_xdl_nhwc_kyxc_nhwk_f16_instances(conv_ptrs);
        break;
    case 3:
        ck::tensor_operation::device::device_conv2d_bwd_data_instance::
            add_device_conv3d_bwd_data_xdl_ndhwc_kzyxc_ndhwk_f16_instances(conv_ptrs);
        break;
    default: break;
    }
}
template <>
void get_device_conv_bwd_data_op_ptr(
    BF16, BF16, BF16, std::vector<DeviceConvBwdDataNoOpPtr>& conv_ptrs, int num_dim_spatial)
{
    switch(num_dim_spatial)
    {
    case 1:
        ck::tensor_operation::device::device_conv2d_bwd_data_instance::
            add_device_conv1d_bwd_data_xdl_nwc_kxc_nwk_bf16_instances(conv_ptrs);
        break;
    case 2:
        ck::tensor_operation::device::device_conv2d_bwd_data_instance::
            add_device_conv2d_bwd_data_xdl_nhwc_kyxc_nhwk_bf16_instances(conv_ptrs);
        break;
    case 3:
        ck::tensor_operation::device::device_conv2d_bwd_data_instance::
            add_device_conv3d_bwd_data_xdl_ndhwc_kzyxc_ndhwk_bf16_instances(conv_ptrs);
        break;
    default: break;
    }
}
template <>
void get_device_conv_bwd_data_op_ptr(
    INT8, INT8, INT8, std::vector<DeviceConvBwdDataNoOpPtr>& conv_ptrs, int num_dim_spatial)
{
    switch(num_dim_spatial)
    {
    case 1:
        ck::tensor_operation::device::device_conv2d_bwd_data_instance::
            add_device_conv1d_bwd_data_xdl_nwc_kxc_nwk_int8_instances(conv_ptrs);
        break;
    case 2:
        ck::tensor_operation::device::device_conv2d_bwd_data_instance::
            add_device_conv2d_bwd_data_xdl_nhwc_kyxc_nhwk_int8_instances(conv_ptrs);
        break;
    case 3:
        ck::tensor_operation::device::device_conv2d_bwd_data_instance::
            add_device_conv3d_bwd_data_xdl_ndhwc_kzyxc_ndhwk_int8_instances(conv_ptrs);
        break;
    default: break;
    }
}

template <typename T>
static bool check_out(const Tensor<T>& ref, const Tensor<T>& result)
{
    float max_diff = 1e-6;

230
    for(std::size_t i = 0; i < ref.mData.size(); ++i)
231
232
233
234
235
236
237
238
239
240
241
242
243
    {
        float diff = std::abs(double(ref.mData[i]) - double(result.mData[i]));
        if(max_diff < diff)
        {
            return false;
        }
    }
    return true;
}
template <typename DataType>
void show_data_nhwc_layout(Tensor<DataType>& nhwc)
{
    std::cout << "[";
244
    for(int n = 0; n < ck::type_convert<int>(nhwc.mDesc.GetLengths()[0]); n++)
245
246
    {
        std::cout << "[";
247
        for(int hi = 0; hi < ck::type_convert<int>(nhwc.mDesc.GetLengths()[2]); hi++)
248
249
        {
            std::cout << "[";
250
            for(int wi = 0; wi < ck::type_convert<int>(nhwc.mDesc.GetLengths()[3]); wi++)
251
252
            {
                std::cout << "[";
253
                for(int c = 0; c < ck::type_convert<int>(nhwc.mDesc.GetLengths()[1]); c++)
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
                {
                    std::cout << static_cast<float>(nhwc(n, c, hi, wi)) << "  ";
                }
                std::cout << "]";
            }
            std::cout << "]";
        }
        std::cout << "]";
    }
    std::cout << "]";
}

template <int NDimSpatial,
          typename InDataType,
          typename WeiDataType,
          typename OutDataType,
          typename AccDataType,
          typename InLayout,
          typename WeiLayout,
          typename OutLayout>
bool profile_convnd_bwd_data_impl(int do_verification,
                                  int init_method,
                                  bool do_log,
JD's avatar
JD committed
277
                                  bool time_kernel,
278
279
280
                                  ck::index_t N,
                                  ck::index_t K,
                                  ck::index_t C,
ltqin's avatar
ltqin committed
281
282
283
284
285
286
287
                                  const std::vector<ck::index_t>& input_spatial_lengths,
                                  const std::vector<ck::index_t>& filter_spatial_lengths,
                                  const std::vector<ck::index_t>& output_spatial_lengths,
                                  const std::vector<ck::index_t>& conv_filter_strides,
                                  const std::vector<ck::index_t>& conv_filter_dilations,
                                  const std::vector<ck::index_t>& input_left_pads,
                                  const std::vector<ck::index_t>& input_right_pads)
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
{
    using InElementOp  = ck::tensor_operation::element_wise::PassThrough;
    using WeiElementOp = ck::tensor_operation::element_wise::PassThrough;
    using OutElementOp = ck::tensor_operation::element_wise::PassThrough;

    const auto in_element_op  = InElementOp{};
    const auto wei_element_op = WeiElementOp{};
    const auto out_element_op = OutElementOp{};

    std::vector<std::size_t> input_dims{static_cast<std::size_t>(N), static_cast<std::size_t>(C)};
    input_dims.insert(
        std::end(input_dims), std::begin(input_spatial_lengths), std::end(input_spatial_lengths));

    std::vector<std::size_t> filter_dims{static_cast<std::size_t>(K), static_cast<std::size_t>(C)};
    filter_dims.insert(std::end(filter_dims),
                       std::begin(filter_spatial_lengths),
                       std::end(filter_spatial_lengths));

    std::vector<std::size_t> output_dims{static_cast<std::size_t>(N), static_cast<std::size_t>(K)};
    output_dims.insert(std::end(output_dims),
                       std::begin(output_spatial_lengths),
                       std::end(output_spatial_lengths));

ltqin's avatar
ltqin committed
311
    Tensor<InDataType> input_host_result(
312
        get_input_host_tensor_descriptor<InLayout>(input_dims, NDimSpatial));
ltqin's avatar
ltqin committed
313
    Tensor<InDataType> input_device_result(
314
        get_input_host_tensor_descriptor<InLayout>(input_dims, NDimSpatial));
ltqin's avatar
ltqin committed
315
    Tensor<WeiDataType> weights(
316
        get_filters_host_tensor_descriptor<WeiLayout>(filter_dims, NDimSpatial));
ltqin's avatar
ltqin committed
317
    Tensor<OutDataType> output(
318
319
        get_output_host_ensor_descriptor<OutLayout>(output_dims, NDimSpatial));

ltqin's avatar
ltqin committed
320
321
322
    std::cout << "input: " << input_host_result.mDesc << std::endl;
    std::cout << "weights: " << weights.mDesc << std::endl;
    std::cout << "output: " << output.mDesc << std::endl;
323
324
325
326
327

    switch(init_method)
    {
    case 0: break;
    case 1:
ltqin's avatar
ltqin committed
328
329
        output.GenerateTensorValue(GeneratorTensor_2<OutDataType>{-5, 5});
        weights.GenerateTensorValue(GeneratorTensor_2<WeiDataType>{-5, 5});
330
331
        break;
    default:
ltqin's avatar
ltqin committed
332
333
        output.GenerateTensorValue(GeneratorTensor_1<OutDataType>{1});
        weights.GenerateTensorValue(GeneratorTensor_1<WeiDataType>{1});
334
335
    }

ltqin's avatar
ltqin committed
336
337
338
    DeviceMem in_device_buf(sizeof(InDataType) * input_device_result.mDesc.GetElementSpace());
    DeviceMem wei_device_buf(sizeof(WeiDataType) * weights.mDesc.GetElementSpace());
    DeviceMem out_device_buf(sizeof(OutDataType) * output.mDesc.GetElementSpace());
339

ltqin's avatar
ltqin committed
340
341
    out_device_buf.ToDevice(output.mData.data());
    wei_device_buf.ToDevice(weights.mData.data());
342
343

    // reset input to zero
ltqin's avatar
ltqin committed
344
    in_device_buf.SetZero();
345
346
347
348
349
350

    if(do_verification)
    {
        auto RunReference = [&](auto& ref_conv) {
            auto ref_invoker = ref_conv.MakeInvoker();

ltqin's avatar
ltqin committed
351
352
353
            auto ref_argument = ref_conv.MakeArgument(input_host_result,
                                                      weights,
                                                      output,
354
355
356
357
358
359
360
361
362
                                                      conv_filter_strides,
                                                      conv_filter_dilations,
                                                      input_left_pads,
                                                      input_right_pads,
                                                      InElementOp{},
                                                      WeiElementOp{},
                                                      OutElementOp{});
            ref_invoker.Run(ref_argument);
        };
ltqin's avatar
ltqin committed
363
364
365
366
367
368
369
370
371
372

        auto ref_conv = ck::tensor_operation::host::ReferenceConvBwdData<InDataType,
                                                                         WeiDataType,
                                                                         OutDataType,
                                                                         AccDataType,
                                                                         InElementOp,
                                                                         WeiElementOp,
                                                                         OutElementOp,
                                                                         NDimSpatial>();
        RunReference(ref_conv);
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
    }

    // add device Conv instances
    std::vector<DeviceConvBwdDataNoOpPtr> conv_ptrs;
    get_device_conv_bwd_data_op_ptr(
        InDataType{}, WeiDataType{}, OutDataType{}, conv_ptrs, NDimSpatial);

    if(conv_ptrs.size() <= 0)
    {
        throw std::runtime_error("wrong! no device Conv instance found");
    }

    std::string best_conv_name;
    float best_ave_time   = 0;
    float best_tflops     = 0;
    float best_gb_per_sec = 0;

    // profile device Conv instances
    bool success = true;
    for(auto& conv_ptr : conv_ptrs)
    {
        auto argument_ptr = conv_ptr->MakeArgumentPointer(
            static_cast<InDataType*>(in_device_buf.GetDeviceBuffer()),
            static_cast<WeiDataType*>(wei_device_buf.GetDeviceBuffer()),
            static_cast<OutDataType*>(out_device_buf.GetDeviceBuffer()),
            N,
            K,
            C,
            input_spatial_lengths,
            filter_spatial_lengths,
            output_spatial_lengths,
            conv_filter_strides,
            conv_filter_dilations,
            input_left_pads,
            input_right_pads,
            in_element_op,
            wei_element_op,
            out_element_op);

        auto invoker_ptr = conv_ptr->MakeInvokerPointer();

        if(conv_ptr->IsSupportedArgument(argument_ptr.get()))
        {
            std::string conv_name = conv_ptr->GetTypeString();

JD's avatar
JD committed
418
419
            float ave_time =
                invoker_ptr->Run(argument_ptr.get(), StreamConfig{nullptr, time_kernel});
420
421

            std::size_t flop =
422
423
424
425
                ck::utils::conv::get_flops(N, C, K, filter_spatial_lengths, output_spatial_lengths);
            std::size_t num_btype =
                ck::utils::conv::get_btype<InDataType, WeiDataType, OutDataType>(
                    N, C, K, input_spatial_lengths, filter_spatial_lengths, output_spatial_lengths);
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442

            float tflops     = static_cast<float>(flop) / 1.E9 / ave_time;
            float gb_per_sec = num_btype / 1.E6 / ave_time;

            std::cout << "Perf: " << ave_time << " ms, " << tflops << " TFlops, " << gb_per_sec
                      << " GB/s" << std::endl;

            if(tflops > best_tflops)
            {
                best_conv_name  = conv_name;
                best_tflops     = tflops;
                best_ave_time   = ave_time;
                best_gb_per_sec = gb_per_sec;
            }

            if(do_verification)
            {
ltqin's avatar
ltqin committed
443
                in_device_buf.FromDevice(input_device_result.mData.data());
444

ltqin's avatar
ltqin committed
445
                if(!check_out(input_host_result, input_device_result))
446
447
448
449
450
451
452
453
454
455
                {
                    std::cout << "Fail Info: " << conv_ptr->GetTypeString() << std::endl;

                    success = false;
                }
                else
                {
                    std::cout << "Pass Info: " << conv_ptr->GetTypeString() << std::endl;
                }

ltqin's avatar
ltqin committed
456
                check_error(input_host_result, input_device_result);
457
458
459
460

                if(do_log)
                {
                    std::cout << "in : ";
ltqin's avatar
ltqin committed
461
                    show_data_nhwc_layout(output);
462
463
464
                    std::cout << std::endl;

                    std::cout << "wei: ";
ltqin's avatar
ltqin committed
465
                    show_data_nhwc_layout(weights);
466
467
468
                    std::cout << std::endl;

                    std::cout << "out_host  : ";
ltqin's avatar
ltqin committed
469
                    show_data_nhwc_layout(input_host_result);
470
471
472
                    std::cout << std::endl;

                    std::cout << "out_device: ";
ltqin's avatar
ltqin committed
473
                    show_data_nhwc_layout(input_device_result);
474
475
476
477
478
479
480
481
482
483
484
485
486
                    std::cout << std::endl;
                }
            }
        }
    }

    std::cout << "Best Perf: " << best_ave_time << " ms, " << best_tflops << " TFlops, "
              << best_gb_per_sec << " GB/s, " << best_conv_name << std::endl;
    return success;
}

} // namespace profiler
} // namespace ck