profile_grouped_gemm_impl.hpp 13.1 KB
Newer Older
zjing14's avatar
zjing14 committed
1
#pragma once
Chao Liu's avatar
Chao Liu committed
2

zjing14's avatar
zjing14 committed
3
#include <iomanip>
4

Chao Liu's avatar
Chao Liu committed
5
6
7
8
9
10
11
12
13
14
15
#include "ck/ck.hpp"
#include "ck/tensor_operation/gpu/device/tensor_layout.hpp"
#include "ck/tensor_operation/gpu/device/device_gemm.hpp"
#include "ck/tensor_operation/gpu/element/element_wise_operation.hpp"

#include "ck/library/utility/check_err.hpp"
#include "ck/library/utility/conv_util.hpp"
#include "ck/library/host_tensor/device_memory.hpp"
#include "ck/library/host_tensor/host_tensor.hpp"
#include "ck/library/host_tensor/host_tensor_generator.hpp"
#include "ck/library/reference_tensor_operation/cpu/reference_gemm.hpp"
zjing14's avatar
zjing14 committed
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46

namespace ck {
namespace tensor_operation {
namespace device {
namespace device_grouped_gemm_instance {

using DeviceGroupedGemmNoOpPtr = ck::tensor_operation::device::DeviceGroupedGemmPtr<
    ck::tensor_operation::element_wise::PassThrough,
    ck::tensor_operation::element_wise::PassThrough,
    ck::tensor_operation::element_wise::PassThrough>;

void add_device_grouped_gemm_xdl_f16_f16_f16_mk_kn_mn_instances(
    std::vector<DeviceGroupedGemmNoOpPtr>&);
void add_device_grouped_gemm_xdl_f16_f16_f16_mk_nk_mn_instances(
    std::vector<DeviceGroupedGemmNoOpPtr>&);
void add_device_grouped_gemm_xdl_f16_f16_f16_km_kn_mn_instances(
    std::vector<DeviceGroupedGemmNoOpPtr>&);
void add_device_grouped_gemm_xdl_f16_f16_f16_km_nk_mn_instances(
    std::vector<DeviceGroupedGemmNoOpPtr>&);

} // namespace device_grouped_gemm_instance
} // namespace device
} // namespace tensor_operation
} // namespace ck

namespace ck {
namespace profiler {

template <typename ADataType,
          typename BDataType,
          typename CDataType,
47
          typename AccDataType,
zjing14's avatar
zjing14 committed
48
49
50
51
52
53
          typename ALayout,
          typename BLayout,
          typename CLayout>
void profile_grouped_gemm_impl(int do_verification,
                               int init_method,
                               bool do_log,
JD's avatar
JD committed
54
                               bool time_kernel,
55
56
57
58
59
60
                               const std::vector<int>& Ms,
                               const std::vector<int>& Ns,
                               const std::vector<int>& Ks,
                               const std::vector<int>& StrideAs,
                               const std::vector<int>& StrideBs,
                               const std::vector<int>& StrideCs)
zjing14's avatar
zjing14 committed
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
{
    auto f_host_tensor_descriptor =
        [](std::size_t row, std::size_t col, std::size_t stride, auto layout) {
            if(is_same<decltype(layout), tensor_layout::gemm::RowMajor>::value)
            {
                return HostTensorDescriptor(std::vector<std::size_t>({row, col}),
                                            std::vector<std::size_t>({stride, 1}));
            }
            else
            {
                return HostTensorDescriptor(std::vector<std::size_t>({row, col}),
                                            std::vector<std::size_t>({1, stride}));
            }
        };

76
    std::size_t group_count = Ms.size();
zjing14's avatar
zjing14 committed
77
78
79
80
81
82
83
84
85
86
87

    if(!(group_count == Ns.size() && group_count == Ks.size() && group_count == StrideAs.size() &&
         group_count == StrideBs.size() && group_count == StrideCs.size()))
    {
        throw std::runtime_error("wrong! inconsistent M/N/Ks, StrideA/B/Cs size\n");
    }

    std::vector<Tensor<ADataType>> a_m_k;
    std::vector<Tensor<BDataType>> b_k_n;
    std::vector<Tensor<CDataType>> c_m_n_device_results;

88
    for(std::size_t i = 0; i < group_count; i++)
zjing14's avatar
zjing14 committed
89
90
91
92
93
94
95
96
97
98
99
100
101
    {
        a_m_k.push_back(
            Tensor<ADataType>(f_host_tensor_descriptor(Ms[i], Ks[i], StrideAs[i], ALayout{})));
        b_k_n.push_back(
            Tensor<BDataType>(f_host_tensor_descriptor(Ks[i], Ns[i], StrideBs[i], BLayout{})));

        c_m_n_device_results.push_back(
            Tensor<CDataType>(f_host_tensor_descriptor(Ms[i], Ns[i], StrideCs[i], CLayout{})));

        std::cout << "group: " << i << " a_m_k[" << i << "]:" << a_m_k[i].mDesc << ", b_k_n[" << i
                  << "]:" << b_k_n[i].mDesc << ", c_m_n_device_results[" << i
                  << "]:" << c_m_n_device_results[i].mDesc << std::endl;

102
        std::size_t num_thread = 1;
zjing14's avatar
zjing14 committed
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
        switch(init_method)
        {
        case 0: break;
        case 1:
            a_m_k[i].GenerateTensorValue(GeneratorTensor_2<ADataType>{-5, 5}, num_thread);
            b_k_n[i].GenerateTensorValue(GeneratorTensor_2<BDataType>{-5, 5}, num_thread);
            break;
        default:
            a_m_k[i].GenerateTensorValue(GeneratorTensor_3<ADataType>{0.0, 1.0}, num_thread);
            b_k_n[i].GenerateTensorValue(GeneratorTensor_3<BDataType>{-0.5, 0.5}, num_thread);
        }

        c_m_n_device_results[i].GenerateTensorValue(GeneratorTensor_0<CDataType>{}, num_thread);
    }

    using AElementOp = ck::tensor_operation::element_wise::PassThrough;
    using BElementOp = ck::tensor_operation::element_wise::PassThrough;
    using CElementOp = ck::tensor_operation::element_wise::PassThrough;

    const auto a_element_op = AElementOp{};
    const auto b_element_op = BElementOp{};
    const auto c_element_op = CElementOp{};

    // if(do_verification)
    // {

    // }

    using DeviceMemPtr = std::unique_ptr<DeviceMem>;
    std::vector<DeviceMemPtr> a_device_buf, b_device_buf, c_device_buf;

    a_device_buf.reserve(group_count);
    b_device_buf.reserve(group_count);
    c_device_buf.reserve(group_count);

    std::vector<const void*> p_a, p_b;
    std::vector<void*> p_c;

    p_a.reserve(group_count);
    p_b.reserve(group_count);
    p_c.reserve(group_count);

    std::vector<ck::tensor_operation::device::GemmShape> gemm_shapes;

    gemm_shapes.reserve(group_count);

149
    for(std::size_t i = 0; i < group_count; i++)
zjing14's avatar
zjing14 committed
150
151
    {
        a_device_buf.emplace_back(
zjing14's avatar
zjing14 committed
152
            std::make_unique<DeviceMem>(sizeof(ADataType) * a_m_k[i].mDesc.GetElementSpace()));
zjing14's avatar
zjing14 committed
153
        b_device_buf.emplace_back(
zjing14's avatar
zjing14 committed
154
            std::make_unique<DeviceMem>(sizeof(BDataType) * b_k_n[i].mDesc.GetElementSpace()));
zjing14's avatar
zjing14 committed
155
156

        c_device_buf.emplace_back(std::make_unique<DeviceMem>(
zjing14's avatar
zjing14 committed
157
            sizeof(CDataType) * c_m_n_device_results[i].mDesc.GetElementSpace()));
zjing14's avatar
zjing14 committed
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235

        a_device_buf[i]->ToDevice(a_m_k[i].mData.data());
        b_device_buf[i]->ToDevice(b_k_n[i].mData.data());
        c_device_buf[i]->ToDevice(c_m_n_device_results[i].mData.data());

        gemm_shapes.push_back({Ms[i], Ns[i], Ks[i], StrideAs[i], StrideBs[i], StrideCs[i]});

        p_a.push_back(a_device_buf[i]->GetDeviceBuffer());
        p_b.push_back(b_device_buf[i]->GetDeviceBuffer());
        p_c.push_back(c_device_buf[i]->GetDeviceBuffer());
    }

    // add device GEMM instances
    std::vector<
        ck::tensor_operation::device::device_grouped_gemm_instance::DeviceGroupedGemmNoOpPtr>
        gemm_ptrs;

    if constexpr(is_same<ADataType, half_t>::value && is_same<BDataType, half_t>::value &&
                 is_same<CDataType, half_t>::value)
    {
        if constexpr(is_same<ALayout, tensor_layout::gemm::RowMajor>::value &&
                     is_same<BLayout, tensor_layout::gemm::RowMajor>::value &&
                     is_same<CLayout, tensor_layout::gemm::RowMajor>::value)
        {
            ck::tensor_operation::device::device_grouped_gemm_instance::
                add_device_grouped_gemm_xdl_f16_f16_f16_mk_kn_mn_instances(gemm_ptrs);
        }
        else if constexpr(is_same<ALayout, tensor_layout::gemm::RowMajor>::value &&
                          is_same<BLayout, tensor_layout::gemm::ColumnMajor>::value &&
                          is_same<CLayout, tensor_layout::gemm::RowMajor>::value)
        {
            ck::tensor_operation::device::device_grouped_gemm_instance::
                add_device_grouped_gemm_xdl_f16_f16_f16_mk_nk_mn_instances(gemm_ptrs);
        }
        else if constexpr(is_same<ALayout, tensor_layout::gemm::ColumnMajor>::value &&
                          is_same<BLayout, tensor_layout::gemm::RowMajor>::value &&
                          is_same<CLayout, tensor_layout::gemm::RowMajor>::value)
        {
            ck::tensor_operation::device::device_grouped_gemm_instance::
                add_device_grouped_gemm_xdl_f16_f16_f16_km_kn_mn_instances(gemm_ptrs);
        }
        else if constexpr(is_same<ALayout, tensor_layout::gemm::ColumnMajor>::value &&
                          is_same<BLayout, tensor_layout::gemm::ColumnMajor>::value &&
                          is_same<CLayout, tensor_layout::gemm::RowMajor>::value)
        {
            ck::tensor_operation::device::device_grouped_gemm_instance::
                add_device_grouped_gemm_xdl_f16_f16_f16_km_nk_mn_instances(gemm_ptrs);
        }
    }

    if(gemm_ptrs.size() <= 0)
    {
        throw std::runtime_error("wrong! no device GEMM instance found");
    }

    std::string best_gemm_name;
    float best_ave_time   = 0;
    float best_tflops     = 0;
    float best_gb_per_sec = 0;

    // profile device GEMM instances
    for(auto& gemm_ptr : gemm_ptrs)
    {
        auto argument_ptr =
            gemm_ptr->MakeArgumentPointer(p_a,
                                          p_b,
                                          p_c,
                                          gemm_shapes,
                                          ck::tensor_operation::element_wise::PassThrough{},
                                          ck::tensor_operation::element_wise::PassThrough{},
                                          ck::tensor_operation::element_wise::PassThrough{});

        auto invoker_ptr = gemm_ptr->MakeInvokerPointer();

        if(gemm_ptr->IsSupportedArgument(argument_ptr.get()))
        {
            std::string gemm_name = gemm_ptr->GetTypeString();

JD's avatar
JD committed
236
237
            float ave_time =
                invoker_ptr->Run(argument_ptr.get(), StreamConfig{nullptr, time_kernel});
zjing14's avatar
zjing14 committed
238
239

            std::size_t flop = 0, num_btype = 0;
240
            for(std::size_t i = 0; i < gemm_shapes.size(); i++)
zjing14's avatar
zjing14 committed
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
            {
                flop += std::size_t(2) * Ms[i] * Ns[i] * Ks[i];

                num_btype += sizeof(ADataType) * Ms[i] * Ks[i] + sizeof(BDataType) * Ks[i] * Ns[i] +
                             sizeof(CDataType) * Ms[i] * Ns[i];
            }

            float tflops = static_cast<float>(flop) / 1.E9 / ave_time;

            float gb_per_sec = num_btype / 1.E6 / ave_time;
            std::cout << "Perf: " << std::setw(10) << ave_time << " ms, " << tflops << " TFlops, "
                      << gb_per_sec << " GB/s, " << gemm_name << std::endl;

            if(tflops > best_tflops)
            {
                best_gemm_name  = gemm_name;
                best_tflops     = tflops;
                best_ave_time   = ave_time;
                best_gb_per_sec = gb_per_sec;
            }

            if(do_verification)
            {
264
                for(std::size_t i = 0; i < gemm_shapes.size(); i++)
zjing14's avatar
zjing14 committed
265
266
267
268
269
270
271
272
273
274
275
                {

                    c_device_buf[i]->FromDevice(c_m_n_device_results[i].mData.data());

                    Tensor<CDataType> c_m_n_host_result(
                        f_host_tensor_descriptor(Ms[i], Ns[i], StrideCs[i], CLayout{}));

                    using ReferenceGemmInstance =
                        ck::tensor_operation::host::ReferenceGemm<ADataType,
                                                                  BDataType,
                                                                  CDataType,
276
                                                                  AccDataType,
zjing14's avatar
zjing14 committed
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
                                                                  AElementOp,
                                                                  BElementOp,
                                                                  CElementOp>;

                    auto ref_gemm    = ReferenceGemmInstance{};
                    auto ref_invoker = ref_gemm.MakeInvoker();

                    auto ref_argument = ref_gemm.MakeArgument(a_m_k[i],
                                                              b_k_n[i],
                                                              c_m_n_host_result,
                                                              a_element_op,
                                                              b_element_op,
                                                              c_element_op);

                    ref_invoker.Run(ref_argument);
292
                    ck::utils::check_err(c_m_n_device_results[i].mData, c_m_n_host_result.mData);
zjing14's avatar
zjing14 committed
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320

                    if(do_log)
                    {
                        LogRangeAsType<float>(std::cout << "a : ", a_m_k[i].mData, ",")
                            << std::endl;
                        LogRangeAsType<float>(std::cout << "b: ", b_k_n[i].mData, ",") << std::endl;
                        LogRangeAsType<float>(
                            std::cout << "c_device: ", c_m_n_device_results[i].mData, ",")
                            << std::endl;
                        LogRangeAsType<float>(
                            std::cout << "c_host  : ", c_m_n_host_result.mData, ",")
                            << std::endl;
                    }
                }
            }
        }
        else
        {
            std::cout << "does not support this GEMM problem" << std::endl;
        }
    }

    std::cout << "Best Perf: " << best_ave_time << " ms, " << best_tflops << " TFlops, "
              << best_gb_per_sec << " GB/s, " << best_gemm_name << std::endl;
} // namespace profiler

} // namespace profiler
} // namespace ck