gemm_util.hpp 26.5 KB
Newer Older
1
<<<<<<< HEAD
2
3
4
#ifndef GEMM_UTILS_HPP
#define GEMM_UTILS_HPP

5
#include "check_err.hpp"
6
7
8
#include "config.hpp"
#include "device.hpp"
#include "host_tensor.hpp"
9
10
11
#include "host_tensor_generator.hpp"
#include "reference_gemm.hpp"
#include "tensor_layout.hpp"
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105

namespace ck {
namespace gemm_util {

struct GemmParams
{
    GemmParams()
        : M(1024), N(1024), K(1024), StrideA(1024), StrideB(1024), StrideC(1024), alpha(1), beta(0)
    {
    }

    ck::index_t M;
    ck::index_t N;
    ck::index_t K;

    ck::index_t StrideA;
    ck::index_t StrideB;
    ck::index_t StrideC;

    float alpha;
    float beta;
};

template <typename GemmInstance,
          typename ADataType,
          typename BDataType,
          typename CDataType,
          typename AElementwiseOperation,
          typename BElementwiseOperation,
          typename CElementwiseOperation>
void RunHostGEMM(const Tensor<ADataType>& A,
                 const Tensor<BDataType>& B,
                 Tensor<CDataType>& C,
                 AElementwiseOperation a_element_op,
                 BElementwiseOperation b_element_op,
                 CElementwiseOperation c_element_op)
{
    auto ref_gemm    = GemmInstance{};
    auto ref_invoker = ref_gemm.MakeInvoker();

    auto ref_argument = ref_gemm.MakeArgument(A, B, C, a_element_op, b_element_op, c_element_op);

    ref_invoker.Run(ref_argument);
}

template <typename DeviceGemmPtr_,
          typename ADataType,
          typename BDataType,
          typename CDataType,
          typename AElementwiseOperation,
          typename BElementwiseOperation,
          typename CElementwiseOperation>
void RunDeviceGEMM(DeviceGemmPtr_& gemmPtr,
                   const ck::gemm_util::GemmParams& params,
                   const Tensor<ADataType>& A,
                   const Tensor<BDataType>& B,
                   Tensor<CDataType>& C,
                   AElementwiseOperation a_element_op,
                   BElementwiseOperation b_element_op,
                   CElementwiseOperation c_element_op)
{
    DeviceMem a_m_k_device_buf(sizeof(ADataType) * A.mDesc.GetElementSpace());
    DeviceMem b_k_n_device_buf(sizeof(BDataType) * B.mDesc.GetElementSpace());
    DeviceMem c_m_n_device_buf(sizeof(CDataType) * C.mDesc.GetElementSpace());

    a_m_k_device_buf.ToDevice(A.mData.data());
    b_k_n_device_buf.ToDevice(B.mData.data());

    auto invoker_ptr = gemmPtr->MakeInvokerPointer();
    auto argument_ptr =
        gemmPtr->MakeArgumentPointer(static_cast<ADataType*>(a_m_k_device_buf.GetDeviceBuffer()),
                                     static_cast<BDataType*>(b_k_n_device_buf.GetDeviceBuffer()),
                                     static_cast<CDataType*>(c_m_n_device_buf.GetDeviceBuffer()),
                                     params.M,
                                     params.N,
                                     params.K,
                                     params.StrideA,
                                     params.StrideB,
                                     params.StrideC,
                                     a_element_op,
                                     b_element_op,
                                     c_element_op);

    if(!gemmPtr->IsSupportedArgument(argument_ptr.get()))
    {
        throw std::runtime_error(
            "wrong! device_gemm with the specified compilation parameters does "
            "not support this GEMM problem");
    }

    invoker_ptr->Run(argument_ptr.get());
    c_m_n_device_buf.FromDevice(C.mData.data());
}

106
107
108
109
template <typename DeviceGemmPtr_,
          typename ADataType,
          typename BDataType,
          typename CDataType,
ltqin's avatar
ltqin committed
110
          typename AccDataType,
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
          typename ALayout,
          typename BLayout,
          typename CLayout,
          typename AElementwiseOperation,
          typename BElementwiseOperation,
          typename CElementwiseOperation>
struct TestGemm
{
    auto PrepareGemmTensor(const ck::gemm_util::GemmParams& params)
    {
        auto f_host_tensor_descriptor =
            [](std::size_t row, std::size_t col, std::size_t stride, auto layout) {
                if(std::is_same<decltype(layout), ck::tensor_layout::gemm::RowMajor>::value)
                {
                    return HostTensorDescriptor(std::vector<std::size_t>({row, col}),
                                                std::vector<std::size_t>({stride, 1}));
                }
                else
                {
                    return HostTensorDescriptor(std::vector<std::size_t>({row, col}),
                                                std::vector<std::size_t>({1, stride}));
                }
            };

        Tensor<ADataType> a_m_k(
            f_host_tensor_descriptor(params.M, params.K, params.StrideA, ALayout{}));
        Tensor<BDataType> b_k_n(
            f_host_tensor_descriptor(params.K, params.N, params.StrideB, BLayout{}));
        Tensor<CDataType> c_m_n_host_result(
            f_host_tensor_descriptor(params.M, params.N, params.StrideC, CLayout{}));
        Tensor<CDataType> c_m_n_device_result(
            f_host_tensor_descriptor(params.M, params.N, params.StrideC, CLayout{}));

ltqin's avatar
ltqin committed
144
        auto f_generate_tensor_value = [](auto& desc, auto type) {
145
146
            using dataType = decltype(type);

ltqin's avatar
ltqin committed
147
            if(std::is_same<dataType, int8_t>::value || std::is_same<dataType, double>::value)
148
            {
ltqin's avatar
ltqin committed
149
                desc.GenerateTensorValue(GeneratorTensor_2<dataType>{-5, 5});
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
            }
            else
            {
                desc.GenerateTensorValue(GeneratorTensor_3<dataType>{-0.5, 0.5});
            }
        };

        f_generate_tensor_value(a_m_k, ADataType{});
        f_generate_tensor_value(b_k_n, BDataType{});

        return std::make_tuple(a_m_k, b_k_n, c_m_n_host_result, c_m_n_device_result);
    }

    auto operator()(DeviceGemmPtr_& gemmPtr)
    {
ltqin's avatar
ltqin committed
165
        std::cout << "data type: " << typeid(ADataType{}).name() << std::endl;
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
        std::cout << "ALayout = " << ALayout{}.name << ", BLayout = " << BLayout{}.name
                  << ", CLayout = " << CLayout{}.name << std::endl;
        std::cout << gemmPtr->GetTypeString() << std::endl;

        // Arrange
        ck::gemm_util::GemmParams params;
        params.M       = 1024;
        params.N       = 1024;
        params.K       = 1024;
        params.StrideA = 1024;
        params.StrideB = 1024;
        params.StrideC = 1024;

        auto host_tensors = PrepareGemmTensor(params);

        const Tensor<ADataType>& a  = std::get<0>(host_tensors);
        const Tensor<BDataType>& b  = std::get<1>(host_tensors);
        Tensor<CDataType>& c_host   = std::get<2>(host_tensors);
        Tensor<CDataType>& c_device = std::get<3>(host_tensors);

        auto a_element_op = AElementwiseOperation{};
        auto b_element_op = BElementwiseOperation{};
        auto c_element_op = CElementwiseOperation{};

        using ReferenceGemmInstance =
            ck::tensor_operation::host::ReferenceGemm<ADataType,
                                                      BDataType,
                                                      CDataType,
ltqin's avatar
ltqin committed
194
                                                      AccDataType,
195
196
197
198
199
200
201
202
203
204
205
206
                                                      AElementwiseOperation,
                                                      BElementwiseOperation,
                                                      CElementwiseOperation>;
        ck::gemm_util::RunHostGEMM<ReferenceGemmInstance>(
            a, b, c_host, a_element_op, b_element_op, c_element_op);

        // Act
        ck::gemm_util::RunDeviceGEMM(
            gemmPtr, params, a, b, c_device, a_element_op, b_element_op, c_element_op);

        // Assert
        bool res = false;
ltqin's avatar
ltqin committed
207
208
209
210
211
212
        if(std::is_same<CDataType, double>::value)
        {
            res = ck::utils::check_err(c_device.mData, c_host.mData);
            std::cout << (res ? "SUCCESS" : "FAILURE") << std::endl;
        }
        else if(std::is_same<CDataType, float>::value)
213
        {
214
            res = ck::utils::check_err(c_device.mData, c_host.mData);
215
216
217
218
            std::cout << (res ? "SUCCESS" : "FAILURE") << std::endl;
        }
        else if(std::is_same<CDataType, ck::half_t>::value)
        {
219
            res = ck::utils::check_err(c_device.mData, c_host.mData);
220
221
222
223
            std::cout << (res ? "SUCCESS" : "FAILURE") << std::endl;
        }
        else if(std::is_same<CDataType, int8_t>::value)
        {
224
            res = ck::utils::check_err(c_device.mData, c_host.mData);
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
            std::cout << (res ? "SUCCESS" : "FAILURE") << std::endl;
        }

        return res;
    }
};

template <typename DeviceGemmPtr_,
          typename ALayout,
          typename BLayout,
          typename CLayout,
          typename AElementwiseOperation,
          typename BElementwiseOperation,
          typename CElementwiseOperation>
struct TestGemmBF16
{
    using BF16 = ck::bhalf_t;

    auto PrepareGemmTensorBF16(const ck::gemm_util::GemmParams& params)
    {
        auto f_host_tensor_descriptor =
            [](std::size_t row, std::size_t col, std::size_t stride, auto layout) {
                if(std::is_same<decltype(layout), ck::tensor_layout::gemm::RowMajor>::value)
                {
                    return HostTensorDescriptor(std::vector<std::size_t>({row, col}),
                                                std::vector<std::size_t>({stride, 1}));
                }
                else
                {
                    return HostTensorDescriptor(std::vector<std::size_t>({row, col}),
                                                std::vector<std::size_t>({1, stride}));
                }
            };

        // use fp32 host kernel to verify bf16 device kernel
        Tensor<BF16> a_m_k_bf16(
            f_host_tensor_descriptor(params.M, params.K, params.StrideA, ALayout{}));
        Tensor<BF16> b_k_n_bf16(
            f_host_tensor_descriptor(params.K, params.N, params.StrideB, BLayout{}));
        Tensor<BF16> c_m_n_device_bf16(
            f_host_tensor_descriptor(params.M, params.N, params.StrideC, CLayout{}));

        Tensor<float> a_m_k_fp32(
            f_host_tensor_descriptor(params.M, params.K, params.StrideA, ALayout{}));
        Tensor<float> b_k_n_fp32(
            f_host_tensor_descriptor(params.K, params.N, params.StrideB, BLayout{}));
        Tensor<float> c_m_n_host_fp32(
            f_host_tensor_descriptor(params.M, params.N, params.StrideC, CLayout{}));
        Tensor<float> c_m_n_device_fp32(
            f_host_tensor_descriptor(params.M, params.N, params.StrideC, CLayout{}));

        a_m_k_bf16.GenerateTensorValue(GeneratorTensor_3<BF16>{-0.5, 0.5});
        b_k_n_bf16.GenerateTensorValue(GeneratorTensor_3<BF16>{-0.5, 0.5});

        bf16_to_f32_(a_m_k_bf16, a_m_k_fp32);
        bf16_to_f32_(b_k_n_bf16, b_k_n_fp32);

        return std::make_tuple(a_m_k_bf16,
                               b_k_n_bf16,
                               c_m_n_device_bf16,
                               a_m_k_fp32,
                               b_k_n_fp32,
                               c_m_n_host_fp32,
                               c_m_n_device_fp32);
    }

    auto operator()(DeviceGemmPtr_& gemmPtr)
    {
        // Arrange
        ck::gemm_util::GemmParams params;
        params.M       = 1024;
        params.N       = 1024;
        params.K       = 1024;
        params.StrideA = 1024;
        params.StrideB = 1024;
        params.StrideC = 1024;

        auto host_tensors            = PrepareGemmTensorBF16(params);
        const Tensor<BF16>& a_bf16   = std::get<0>(host_tensors);
        const Tensor<BF16>& b_bf16   = std::get<1>(host_tensors);
        Tensor<BF16>& c_device_bf16  = std::get<2>(host_tensors);
        Tensor<float>& a_fp32        = std::get<3>(host_tensors);
        Tensor<float>& b_fp32        = std::get<4>(host_tensors);
        Tensor<float>& c_host_fp32   = std::get<5>(host_tensors);
        Tensor<float>& c_device_fp32 = std::get<6>(host_tensors);

        auto a_element_op = AElementwiseOperation{};
        auto b_element_op = BElementwiseOperation{};
        auto c_element_op = CElementwiseOperation{};

        // use fp32 host kernel to verify bf16 device kernel
        using ReferenceGemmInstance =
            ck::tensor_operation::host::ReferenceGemm<float,
ltqin's avatar
ltqin committed
318
                                                      float,
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
                                                      float,
                                                      float,
                                                      AElementwiseOperation,
                                                      BElementwiseOperation,
                                                      CElementwiseOperation>;
        ck::gemm_util::RunHostGEMM<ReferenceGemmInstance>(
            a_fp32, b_fp32, c_host_fp32, a_element_op, b_element_op, c_element_op);

        // Act
        ck::gemm_util::RunDeviceGEMM(gemmPtr,
                                     params,
                                     a_bf16,
                                     b_bf16,
                                     c_device_bf16,
                                     a_element_op,
                                     b_element_op,
                                     c_element_op);

        bf16_to_f32_(c_device_bf16, c_device_fp32);

        // Assert
340
        bool res = ck::utils::check_err(
341
342
343
344
345
346
347
            c_device_fp32.mData, c_host_fp32.mData, "Error: incorrect results!", 1e-2f, 1e-3f);
        std::cout << (res ? "SUCCESS" : "FAILURE") << std::endl;

        return res;
    };
};

348
349
350
} // namespace gemm_util
} // namespace ck
#endif
351
=======
Anthony Chang's avatar
Anthony Chang committed
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
#ifndef GEMM_UTILS_HPP
#define GEMM_UTILS_HPP

#include "check_err.hpp"
#include "config.hpp"
#include "device.hpp"
#include "host_tensor.hpp"
#include "host_tensor_generator.hpp"
#include "reference_gemm.hpp"
#include "tensor_layout.hpp"

namespace ck {
namespace gemm_util {

struct GemmParams
{
    GemmParams()
        : M(1024), N(1024), K(1024), StrideA(1024), StrideB(1024), StrideC(1024), alpha(1), beta(0)
    {
    }

    ck::index_t M;
    ck::index_t N;
    ck::index_t K;

    ck::index_t StrideA;
    ck::index_t StrideB;
    ck::index_t StrideC;

    float alpha;
    float beta;
};

template <typename GemmInstance,
          typename ADataType,
          typename BDataType,
          typename CDataType,
          typename AElementwiseOperation,
          typename BElementwiseOperation,
          typename CElementwiseOperation>
void RunHostGEMM(const Tensor<ADataType>& A,
                 const Tensor<BDataType>& B,
                 Tensor<CDataType>& C,
                 AElementwiseOperation a_element_op,
                 BElementwiseOperation b_element_op,
                 CElementwiseOperation c_element_op)
{
    auto ref_gemm    = GemmInstance{};
    auto ref_invoker = ref_gemm.MakeInvoker();

    auto ref_argument = ref_gemm.MakeArgument(A, B, C, a_element_op, b_element_op, c_element_op);

    ref_invoker.Run(ref_argument);
}

template <typename DeviceGemmPtr_,
          typename ADataType,
          typename BDataType,
          typename CDataType,
          typename AElementwiseOperation,
          typename BElementwiseOperation,
          typename CElementwiseOperation>
void RunDeviceGEMM(DeviceGemmPtr_& gemmPtr,
                   const ck::gemm_util::GemmParams& params,
                   const Tensor<ADataType>& A,
                   const Tensor<BDataType>& B,
                   Tensor<CDataType>& C,
                   AElementwiseOperation a_element_op,
                   BElementwiseOperation b_element_op,
                   CElementwiseOperation c_element_op)
{
    DeviceMem a_m_k_device_buf(sizeof(ADataType) * A.mDesc.GetElementSpace());
    DeviceMem b_k_n_device_buf(sizeof(BDataType) * B.mDesc.GetElementSpace());
    DeviceMem c_m_n_device_buf(sizeof(CDataType) * C.mDesc.GetElementSpace());

    a_m_k_device_buf.ToDevice(A.mData.data());
    b_k_n_device_buf.ToDevice(B.mData.data());

    auto invoker_ptr = gemmPtr->MakeInvokerPointer();
    auto argument_ptr =
        gemmPtr->MakeArgumentPointer(static_cast<ADataType*>(a_m_k_device_buf.GetDeviceBuffer()),
                                     static_cast<BDataType*>(b_k_n_device_buf.GetDeviceBuffer()),
                                     static_cast<CDataType*>(c_m_n_device_buf.GetDeviceBuffer()),
                                     params.M,
                                     params.N,
                                     params.K,
                                     params.StrideA,
                                     params.StrideB,
                                     params.StrideC,
                                     a_element_op,
                                     b_element_op,
                                     c_element_op);

    if(!gemmPtr->IsSupportedArgument(argument_ptr.get()))
    {
        throw std::runtime_error(
            "wrong! device_gemm with the specified compilation parameters does "
            "not support this GEMM problem");
    }

    invoker_ptr->Run(argument_ptr.get());
    c_m_n_device_buf.FromDevice(C.mData.data());
}

template <typename DeviceGemmPtr_,
          typename ADataType,
          typename BDataType,
          typename CDataType,
          typename ALayout,
          typename BLayout,
          typename CLayout,
          typename AElementwiseOperation,
          typename BElementwiseOperation,
          typename CElementwiseOperation>
struct TestGemm
{
    auto PrepareGemmTensor(const ck::gemm_util::GemmParams& params)
    {
        auto f_host_tensor_descriptor =
            [](std::size_t row, std::size_t col, std::size_t stride, auto layout) {
                if(std::is_same<decltype(layout), ck::tensor_layout::gemm::RowMajor>::value)
                {
                    return HostTensorDescriptor(std::vector<std::size_t>({row, col}),
                                                std::vector<std::size_t>({stride, 1}));
                }
                else
                {
                    return HostTensorDescriptor(std::vector<std::size_t>({row, col}),
                                                std::vector<std::size_t>({1, stride}));
                }
            };

        Tensor<ADataType> a_m_k(
            f_host_tensor_descriptor(params.M, params.K, params.StrideA, ALayout{}));
        Tensor<BDataType> b_k_n(
            f_host_tensor_descriptor(params.K, params.N, params.StrideB, BLayout{}));
        Tensor<CDataType> c_m_n_host_result(
            f_host_tensor_descriptor(params.M, params.N, params.StrideC, CLayout{}));
        Tensor<CDataType> c_m_n_device_result(
            f_host_tensor_descriptor(params.M, params.N, params.StrideC, CLayout{}));

        auto f_generate_tensor_value = [](auto& desc, auto type) {
            using dataType = decltype(type);

            if(std::is_same<dataType, int8_t>::value)
            {
                desc.GenerateTensorValue(GeneratorTensor_2<int8_t>{-5, 5});
            }
            else
            {
                desc.GenerateTensorValue(GeneratorTensor_3<dataType>{-0.5, 0.5});
            }
        };

        f_generate_tensor_value(a_m_k, ADataType{});
        f_generate_tensor_value(b_k_n, BDataType{});

        return std::make_tuple(a_m_k, b_k_n, c_m_n_host_result, c_m_n_device_result);
    }

    auto operator()(DeviceGemmPtr_& gemmPtr)
    {
        std::cout << "ALayout = " << ALayout{}.name << ", BLayout = " << BLayout{}.name
                  << ", CLayout = " << CLayout{}.name << std::endl;
        std::cout << gemmPtr->GetTypeString() << std::endl;

        // Arrange
        ck::gemm_util::GemmParams params;
        params.M       = 1024;
        params.N       = 1024;
        params.K       = 1024;
        params.StrideA = 1024;
        params.StrideB = 1024;
        params.StrideC = 1024;

        auto host_tensors = PrepareGemmTensor(params);

        const Tensor<ADataType>& a  = std::get<0>(host_tensors);
        const Tensor<BDataType>& b  = std::get<1>(host_tensors);
        Tensor<CDataType>& c_host   = std::get<2>(host_tensors);
        Tensor<CDataType>& c_device = std::get<3>(host_tensors);

        auto a_element_op = AElementwiseOperation{};
        auto b_element_op = BElementwiseOperation{};
        auto c_element_op = CElementwiseOperation{};

        using ReferenceGemmInstance =
            ck::tensor_operation::host::ReferenceGemm<ADataType,
                                                      BDataType,
                                                      CDataType,
                                                      AElementwiseOperation,
                                                      BElementwiseOperation,
                                                      CElementwiseOperation>;
        ck::gemm_util::RunHostGEMM<ReferenceGemmInstance>(
            a, b, c_host, a_element_op, b_element_op, c_element_op);

        // Act
        ck::gemm_util::RunDeviceGEMM(
            gemmPtr, params, a, b, c_device, a_element_op, b_element_op, c_element_op);

        // Assert
        bool res = false;
        if(std::is_same<CDataType, float>::value)
        {
            res = ck::utils::check_err(c_device.mData, c_host.mData);
            std::cout << (res ? "SUCCESS" : "FAILURE") << std::endl;
        }
        else if(std::is_same<CDataType, ck::half_t>::value)
        {
            res = ck::utils::check_err(c_device.mData, c_host.mData);
            std::cout << (res ? "SUCCESS" : "FAILURE") << std::endl;
        }
        else if(std::is_same<CDataType, int8_t>::value)
        {
            res = ck::utils::check_err(c_device.mData, c_host.mData);
            std::cout << (res ? "SUCCESS" : "FAILURE") << std::endl;
        }

        return res;
    }
};

template <typename DeviceGemmPtr_,
          typename ALayout,
          typename BLayout,
          typename CLayout,
          typename AElementwiseOperation,
          typename BElementwiseOperation,
          typename CElementwiseOperation>
struct TestGemmBF16
{
    using BF16 = ck::bhalf_t;

    auto PrepareGemmTensorBF16(const ck::gemm_util::GemmParams& params)
    {
        auto f_host_tensor_descriptor =
            [](std::size_t row, std::size_t col, std::size_t stride, auto layout) {
                if(std::is_same<decltype(layout), ck::tensor_layout::gemm::RowMajor>::value)
                {
                    return HostTensorDescriptor(std::vector<std::size_t>({row, col}),
                                                std::vector<std::size_t>({stride, 1}));
                }
                else
                {
                    return HostTensorDescriptor(std::vector<std::size_t>({row, col}),
                                                std::vector<std::size_t>({1, stride}));
                }
            };

        // use fp32 host kernel to verify bf16 device kernel
        Tensor<BF16> a_m_k_bf16(
            f_host_tensor_descriptor(params.M, params.K, params.StrideA, ALayout{}));
        Tensor<BF16> b_k_n_bf16(
            f_host_tensor_descriptor(params.K, params.N, params.StrideB, BLayout{}));
        Tensor<BF16> c_m_n_device_bf16(
            f_host_tensor_descriptor(params.M, params.N, params.StrideC, CLayout{}));

        Tensor<float> a_m_k_fp32(
            f_host_tensor_descriptor(params.M, params.K, params.StrideA, ALayout{}));
        Tensor<float> b_k_n_fp32(
            f_host_tensor_descriptor(params.K, params.N, params.StrideB, BLayout{}));
        Tensor<float> c_m_n_host_fp32(
            f_host_tensor_descriptor(params.M, params.N, params.StrideC, CLayout{}));
        Tensor<float> c_m_n_device_fp32(
            f_host_tensor_descriptor(params.M, params.N, params.StrideC, CLayout{}));

        a_m_k_bf16.GenerateTensorValue(GeneratorTensor_3<BF16>{-0.5, 0.5});
        b_k_n_bf16.GenerateTensorValue(GeneratorTensor_3<BF16>{-0.5, 0.5});

        bf16_to_f32_(a_m_k_bf16, a_m_k_fp32);
        bf16_to_f32_(b_k_n_bf16, b_k_n_fp32);

        return std::make_tuple(a_m_k_bf16,
                               b_k_n_bf16,
                               c_m_n_device_bf16,
                               a_m_k_fp32,
                               b_k_n_fp32,
                               c_m_n_host_fp32,
                               c_m_n_device_fp32);
    }

    auto operator()(DeviceGemmPtr_& gemmPtr)
    {
        // Arrange
        ck::gemm_util::GemmParams params;
        params.M       = 1024;
        params.N       = 1024;
        params.K       = 1024;
        params.StrideA = 1024;
        params.StrideB = 1024;
        params.StrideC = 1024;

        auto host_tensors            = PrepareGemmTensorBF16(params);
        const Tensor<BF16>& a_bf16   = std::get<0>(host_tensors);
        const Tensor<BF16>& b_bf16   = std::get<1>(host_tensors);
        Tensor<BF16>& c_device_bf16  = std::get<2>(host_tensors);
        Tensor<float>& a_fp32        = std::get<3>(host_tensors);
        Tensor<float>& b_fp32        = std::get<4>(host_tensors);
        Tensor<float>& c_host_fp32   = std::get<5>(host_tensors);
        Tensor<float>& c_device_fp32 = std::get<6>(host_tensors);

        auto a_element_op = AElementwiseOperation{};
        auto b_element_op = BElementwiseOperation{};
        auto c_element_op = CElementwiseOperation{};

        // use fp32 host kernel to verify bf16 device kernel
        using ReferenceGemmInstance =
            ck::tensor_operation::host::ReferenceGemm<float,
                                                      float,
                                                      float,
                                                      AElementwiseOperation,
                                                      BElementwiseOperation,
                                                      CElementwiseOperation>;
        ck::gemm_util::RunHostGEMM<ReferenceGemmInstance>(
            a_fp32, b_fp32, c_host_fp32, a_element_op, b_element_op, c_element_op);

        // Act
        ck::gemm_util::RunDeviceGEMM(gemmPtr,
                                     params,
                                     a_bf16,
                                     b_bf16,
                                     c_device_bf16,
                                     a_element_op,
                                     b_element_op,
                                     c_element_op);

        bf16_to_f32_(c_device_bf16, c_device_fp32);

        // Assert
        bool res = ck::utils::check_err(
            c_device_fp32.mData, c_host_fp32.mData, "Error: incorrect results!", 1e-2f, 1e-3f);
        std::cout << (res ? "SUCCESS" : "FAILURE") << std::endl;

        return res;
    };
};

} // namespace gemm_util
} // namespace ck
#endif
692
>>>>>>> develop