cpu_gemm_uk.cpp 15.7 KB
Newer Older
1
2
3
4
5
6
7
8
#include <iostream>
#include <initializer_list>
#include <cstdlib>
#include <stdlib.h>
#include <string>
#include <sstream>
#include <tuple>
#include <memory>
carlushuang's avatar
carlushuang committed
9
#include <half.hpp>
carlushuang's avatar
carlushuang committed
10
#include <omp.h>
11
12
#include "host_tensor.hpp"
#include "device.hpp"
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
#include "config.hpp"
#include "print.hpp"
#include "cpuid.hpp"
#include "threadwise_gemm_avx2.hpp"

#define ITERATE_THREAD_GEMM_AVX2_MXN_6X16_INSTANCE(FA, FB, FC, TA, TB, NT)   \
    ck::cpu::ThreadwiseGemmAvx2_MxN_6x16<FA, FB, FC, 6, 16, TA, TB, NT>,     \
        ck::cpu::ThreadwiseGemmAvx2_MxN_6x16<FA, FB, FC, 5, 16, TA, TB, NT>, \
        ck::cpu::ThreadwiseGemmAvx2_MxN_6x16<FA, FB, FC, 4, 16, TA, TB, NT>, \
        ck::cpu::ThreadwiseGemmAvx2_MxN_6x16<FA, FB, FC, 3, 16, TA, TB, NT>, \
        ck::cpu::ThreadwiseGemmAvx2_MxN_6x16<FA, FB, FC, 2, 16, TA, TB, NT>, \
        ck::cpu::ThreadwiseGemmAvx2_MxN_6x16<FA, FB, FC, 1, 16, TA, TB, NT>, \
        ck::cpu::ThreadwiseGemmAvx2_MxN_6x16<FA, FB, FC, 6, 8, TA, TB, NT>,  \
        ck::cpu::ThreadwiseGemmAvx2_MxN_6x16<FA, FB, FC, 5, 8, TA, TB, NT>,  \
        ck::cpu::ThreadwiseGemmAvx2_MxN_6x16<FA, FB, FC, 4, 8, TA, TB, NT>,  \
        ck::cpu::ThreadwiseGemmAvx2_MxN_6x16<FA, FB, FC, 3, 8, TA, TB, NT>,  \
        ck::cpu::ThreadwiseGemmAvx2_MxN_6x16<FA, FB, FC, 2, 8, TA, TB, NT>,  \
        ck::cpu::ThreadwiseGemmAvx2_MxN_6x16<FA, FB, FC, 1, 8, TA, TB, NT>

carlushuang's avatar
carlushuang committed
32
//#define ITERATE_THREAD_GEMM_AVX2_MXN_6X16_INSTANCE(FA, FB, FC, TA, TB, NT)  \
33
34
//     ck::cpu::ThreadwiseGemmAvx2_MxN_6x16<FA, FB, FC,  6, 16,  TA,  TB,  NT>

carlushuang's avatar
carlushuang committed
35
36
37
38
39
40
41
42
43
44
45
46
47
48
#define ITERATE_THREAD_GEMM_AVX2_MXN_4X24_INSTANCE(FA, FB, FC, TA, TB, NT)   \
    ck::cpu::ThreadwiseGemmAvx2_MxN_4x24<FA, FB, FC, 4, 24, TA, TB, NT>,     \
        ck::cpu::ThreadwiseGemmAvx2_MxN_4x24<FA, FB, FC, 3, 24, TA, TB, NT>, \
        ck::cpu::ThreadwiseGemmAvx2_MxN_4x24<FA, FB, FC, 2, 24, TA, TB, NT>, \
        ck::cpu::ThreadwiseGemmAvx2_MxN_4x24<FA, FB, FC, 1, 24, TA, TB, NT>, \
        ck::cpu::ThreadwiseGemmAvx2_MxN_4x24<FA, FB, FC, 4, 16, TA, TB, NT>, \
        ck::cpu::ThreadwiseGemmAvx2_MxN_4x24<FA, FB, FC, 3, 16, TA, TB, NT>, \
        ck::cpu::ThreadwiseGemmAvx2_MxN_4x24<FA, FB, FC, 2, 16, TA, TB, NT>, \
        ck::cpu::ThreadwiseGemmAvx2_MxN_4x24<FA, FB, FC, 1, 16, TA, TB, NT>, \
        ck::cpu::ThreadwiseGemmAvx2_MxN_4x24<FA, FB, FC, 4, 8, TA, TB, NT>,  \
        ck::cpu::ThreadwiseGemmAvx2_MxN_4x24<FA, FB, FC, 3, 8, TA, TB, NT>,  \
        ck::cpu::ThreadwiseGemmAvx2_MxN_4x24<FA, FB, FC, 2, 8, TA, TB, NT>,  \
        ck::cpu::ThreadwiseGemmAvx2_MxN_4x24<FA, FB, FC, 1, 8, TA, TB, NT>

49
50
51
using Row = ck::tensor_layout::gemm::RowMajor;
using Col = ck::tensor_layout::gemm::ColumnMajor;

carlushuang's avatar
carlushuang committed
52
53
54
55
56
// using AType = half_float::half;
// using BType = half_float::half;
using AType = float;
using BType = float;
using CType = float;
carlushuang's avatar
carlushuang committed
57
#define NTStore false
carlushuang's avatar
carlushuang committed
58

59
template <typename ALayout, typename BLayout>
60
61
using thread_gemm_avx2_mxn_6x16_instances = std::tuple<
    // clang-format off
62
    //                                        FloatA FloatB FloatC  ALayout  BLayout NTStore
carlushuang's avatar
carlushuang committed
63
64
65
66
    ITERATE_THREAD_GEMM_AVX2_MXN_6X16_INSTANCE( AType, BType, CType, ALayout, BLayout, NTStore),
    ITERATE_THREAD_GEMM_AVX2_MXN_6X16_INSTANCE( AType, BType, CType, ALayout, BLayout, NTStore),
    ITERATE_THREAD_GEMM_AVX2_MXN_6X16_INSTANCE( AType, BType, CType, ALayout, BLayout, NTStore),
    ITERATE_THREAD_GEMM_AVX2_MXN_6X16_INSTANCE( AType, BType, CType, ALayout, BLayout, NTStore)
67

carlushuang's avatar
carlushuang committed
68
    // ITERATE_THREAD_GEMM_AVX2_MXN_6X16_INSTANCE(AType, BType, CType,    ALayout,    BLayout, NTStore)
69
70
71
    // clang-format on
    >;

carlushuang's avatar
carlushuang committed
72
73
74
75
template <typename ALayout, typename BLayout>
using thread_gemm_avx2_mxn_4x24_instances = std::tuple<
    // clang-format off
    //                                        FloatA FloatB FloatC  ALayout  BLayout NTStore
carlushuang's avatar
carlushuang committed
76
77
78
79
    ITERATE_THREAD_GEMM_AVX2_MXN_4X24_INSTANCE( AType, BType, CType, ALayout, BLayout, NTStore),
    ITERATE_THREAD_GEMM_AVX2_MXN_4X24_INSTANCE( AType, BType, CType, ALayout, BLayout, NTStore),
    ITERATE_THREAD_GEMM_AVX2_MXN_4X24_INSTANCE( AType, BType, CType, ALayout, BLayout, NTStore),
    ITERATE_THREAD_GEMM_AVX2_MXN_4X24_INSTANCE( AType, BType, CType, ALayout, BLayout, NTStore)
carlushuang's avatar
carlushuang committed
80
81
82
    // clang-format on
    >;

83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
void dump_cache_hierarchy()
{
    auto dump_cache_type = [&](const ck::cpu::cpuid_cache_type& type) {
        if(type == ck::cpu::cpuid_cache_type_dcache)
            printf("data cache");
        else if(type == ck::cpu::cpuid_cache_type_icache)
            printf("inst cache");
        else if(type == ck::cpu::cpuid_cache_type_unified)
            printf("unif cache");
    };
    auto dump_cache_detail = [&](const ck::cpu::cpuid_cache_detail& detail) {
        dump_cache_type(static_cast<const ck::cpu::cpuid_cache_type>(detail.type));
        printf(" size:%u, cache_line:%u, associativity:%u, sets:%u, partitions:%u, shared by "
               "procs:%u(%u)\n",
               detail.size,
               detail.cache_line_size,
               detail.associativity,
               detail.sets,
               detail.partitions,
               detail.shared_by_procs,
               detail.cores_per_socket);
    };

    ck::cpu::cpuid_cache_hierarchy cache = ck::cpu::cpuid_query_cache();
    if(cache.l1d.size != 0)
    {
        printf("l1 ");
        dump_cache_detail(cache.l1d);
    }
    if(cache.l1i.size != 0)
    {
        printf("l1 ");
        dump_cache_detail(cache.l1i);
    }
    if(cache.l2.size != 0)
    {
        printf("l2 ");
        dump_cache_detail(cache.l2);
    }
    if(cache.l3.size != 0)
    {
        printf("l3 ");
        dump_cache_detail(cache.l3);
    }
    if(cache.l4.size != 0)
    {
        printf("l4 ");
        dump_cache_detail(cache.l4);
    }
}

template <typename T>
void rand_vector(T* v, int elem)
{
    int i;

    static int flag = 0;
    if(!flag)
    {
        srand(time(nullptr));
        flag = 1;
    }

    for(i = 0; i < elem; i++)
    {
        v[i] = (static_cast<T>(rand() % 100)) / 100.0f;
    }
}

bool valid_vector(const float* ref, const float* rhs, uint32_t elem)
{
    float rtol   = 1e-5;
    float atol   = 1e-8;
    uint32_t err = 0;
    for(uint32_t i = 0; i < elem; i++)
    {
        float diff = std::abs(ref[i] - rhs[i]);
        if(diff > atol + rtol * std::abs(ref[i]))
        {
            printf("diff at %u, ref:%f, rhs:%f\n", i, ref[i], rhs[i]);
            err++;
        }
    }

    return err == 0;
}

carlushuang's avatar
carlushuang committed
170
171
172
template <typename FloatA, typename FloatB, typename ALayout, typename BLayout>
void ref_cpu_gemm_uk(
    const FloatA* a, const FloatB* b, float* c, float alpha, uint32_t m, uint32_t n, uint32_t k)
173
{
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
    auto f_host_2d_tensor_descriptor =
        [](std::size_t row, std::size_t col, std::size_t stride, auto layout) {
            if(std::is_same<decltype(layout), Row>::value)
            {
                return HostTensorDescriptor(std::vector<std::size_t>({row, col}),
                                            std::vector<std::size_t>({stride, 1}));
            }
            else
            {
                return HostTensorDescriptor(std::vector<std::size_t>({row, col}),
                                            std::vector<std::size_t>({1, stride}));
            }
        };

    auto f_host_vectored_tensor_descriptor =
        [](std::size_t row, std::size_t col, std::size_t vec, std::size_t stride) {
            // only valid in row major. stride is for each row, contains vector size
            return HostTensorDescriptor(std::vector<std::size_t>({row, col, vec}),
                                        std::vector<std::size_t>({stride, vec, 1}));
        };

    std::size_t lda = std::is_same<Row, ALayout>::value ? k : m;     // in unit of element
    std::size_t ldb = std::is_same<Row, BLayout>::value ? n : k * 8; // in unit of element
    std::size_t ldc = n;
    HostTensorDescriptor a_m_k = f_host_2d_tensor_descriptor(m, n, lda, ALayout{});
    HostTensorDescriptor b_k_n = std::is_same<Row, BLayout>::value
                                     ? f_host_2d_tensor_descriptor(k, n, ldb, BLayout{})
                                     : f_host_vectored_tensor_descriptor(n / 8, k, 8, ldb);
    HostTensorDescriptor c_m_n = f_host_2d_tensor_descriptor(m, n, ldc, Row{});
203
204
205
206
207
208
209
210

    for(uint32_t im = 0; im < m; im++)
    {
        for(uint32_t in = 0; in < n; in++)
        {
            float acc = .0f;
            for(uint32_t ik = 0; ik < k; ik++)
            {
211
212
213
214
215
                acc += static_cast<float>(a[a_m_k.GetOffsetFromMultiIndex(im, ik)]) *
                       (std::is_same<Row, BLayout>::value
                            ? static_cast<float>(b[b_k_n.GetOffsetFromMultiIndex(ik, in)])
                            : static_cast<float>(
                                  b[b_k_n.GetOffsetFromMultiIndex(in / 8, ik, in % 8)]));
216
217
            }
            acc *= alpha;
218
            c[c_m_n.GetOffsetFromMultiIndex(im, in)] = acc;
219
220
221
222
        }
    }
}

carlushuang's avatar
carlushuang committed
223
template <typename FloatA, typename FloatB, typename ALayout, typename BLayout, typename ukenrel_t>
224
void test_ukernel(ukenrel_t uk,
carlushuang's avatar
carlushuang committed
225
226
                  FloatA* mat_a,
                  FloatB* mat_b,
227
228
229
230
231
232
                  float* mat_c,
                  float alpha,
                  uint32_t m,
                  uint32_t n,
                  uint32_t k)
{
carlushuang's avatar
carlushuang committed
233
234
235
    int max_threads = omp_get_max_threads();

    auto invoke_uk = [&](ck::cpu::ThreadwiseGemmParam& param, float* current_mat_c) {
carlushuang's avatar
carlushuang committed
236
237
238
        assert(m % uk.ThreadMr == 0 && n % uk.ThreadNr == 0);

        for(uint32_t i_m = 0; i_m < m; i_m += uk.ThreadMr)
239
        {
carlushuang's avatar
carlushuang committed
240
            if constexpr(std::is_same<Row, ALayout>::value)
241
            {
carlushuang's avatar
carlushuang committed
242
                param.p_a = mat_a + i_m * k;
243
            }
carlushuang's avatar
carlushuang committed
244
            else
245
            {
carlushuang's avatar
carlushuang committed
246
                param.p_a = mat_a + i_m;
247
            }
248
            for(uint32_t i_n = 0; i_n < n; i_n += uk.ThreadNr)
249
            {
carlushuang's avatar
carlushuang committed
250
251
252
253
254
255
256
257
258
                if constexpr(std::is_same<Row, BLayout>::value)
                {
                    param.p_b = mat_b + i_n;
                }
                else
                {
                    param.p_b = mat_b + i_n * k;
                }
                param.p_c = current_mat_c + i_m * n + i_n;
259
260
261
262
263
                uk.Run(&param);
            }
        }
    };

264
    printf("gemm_uk_%dx%d_%c%c: ", uk.ThreadMr, uk.ThreadNr, ALayout::name[0], BLayout::name[0]);
265
266
267
    fflush(stdout);
    // printf("%s: ", typeid(uk).name());fflush(stdout);

carlushuang's avatar
carlushuang committed
268
    float us = .0f;
269

carlushuang's avatar
carlushuang committed
270
#pragma omp parallel reduction(+ : us)
271
    {
carlushuang's avatar
carlushuang committed
272
273
        int tid = omp_get_thread_num();
        DeviceAlignedMemCPU private_c_mem(m * n * sizeof(float), 32);
274
275
        // float* private_c = reinterpret_cast<float*>(private_c_mem.mpDeviceBuf);
        float* private_c = mat_c + tid * m * n;
276

carlushuang's avatar
carlushuang committed
277
        ck::cpu::ThreadwiseGemmParam param;
278
279
280
281
282
283
284
285
286
        param.p_a         = mat_a;
        param.p_b         = mat_b;
        param.p_c         = private_c;
        param.Kr          = k;
        param.lda         = (std::is_same<Row, ALayout>::value ? k : m) * sizeof(FloatA);
        param.ldb         = (std::is_same<Row, BLayout>::value ? n : k * 8) * sizeof(FloatB);
        param.ldc         = n * sizeof(float);
        param.alpha       = alpha;
        param.accmulate_c = 0;
287

carlushuang's avatar
carlushuang committed
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
        memset(private_c, 0, m * n * sizeof(float));

        int repeat = 7e10 / (2 * m * n * k);

        for(int i = 0; i < (repeat / 5); i++)
        {
            invoke_uk(param, private_c);
        }

        WallTimer timer;

        timer.Start();
        for(int i = 0; i < repeat; i++)
        {
            invoke_uk(param, private_c);
        }
        timer.End();

        us += timer.GetElapsedTime() * 1e3 / repeat;

        memset(private_c, 0, m * n * sizeof(float));
        invoke_uk(param, private_c);

        memcpy(mat_c + tid * m * n, private_c, m * n * sizeof(float));
312
313
    }

carlushuang's avatar
carlushuang committed
314
    us = us / max_threads;
315

carlushuang's avatar
carlushuang committed
316
    float gflops = static_cast<float>(2 * m * n * k * max_threads) * 1e-3 / us;
317
318
319
320
321
322

    printf("m:%u, n:%u, k:%u, alpha:%f, cost:%lfus, GFLOPS:%lf, ", m, n, k, alpha, us, gflops);
    fflush(stdout);
}

// implement small ukernel on L1
carlushuang's avatar
carlushuang committed
323
324
325
326
327
template <typename FloatA,
          typename FloatB,
          typename ALayout,
          typename BLayout,
          typename thread_gemm_instance>
328
329
void test_cpu_ukernel(float alpha, uint32_t m, uint32_t n, uint32_t k)
{
carlushuang's avatar
carlushuang committed
330
    int max_threads = omp_get_max_threads();
331

332
333
    DeviceAlignedMemCPU a_mem(m * k * sizeof(FloatA), 32);
    DeviceAlignedMemCPU b_mem(k * n * sizeof(FloatB), 32);
carlushuang's avatar
carlushuang committed
334
    DeviceAlignedMemCPU c_mem(m * n * sizeof(float) * max_threads, 32);
335
    DeviceAlignedMemCPU c_mem_ref(m * n * sizeof(float), 32);
336

337
338
339
    c_mem_ref.SetZero();
    rand_vector(reinterpret_cast<FloatA*>(a_mem.mpDeviceBuf), m * k);
    rand_vector(reinterpret_cast<FloatB*>(b_mem.mpDeviceBuf), k * n);
340

341
342
343
344
345
346
347
348
    ref_cpu_gemm_uk<FloatA, FloatB, ALayout, BLayout>(
        reinterpret_cast<FloatA*>(a_mem.mpDeviceBuf),
        reinterpret_cast<FloatB*>(b_mem.mpDeviceBuf),
        reinterpret_cast<float*>(c_mem_ref.mpDeviceBuf),
        alpha,
        m,
        n,
        k);
349

350
    // using thread_gemm_instance = thread_gemm_avx2_mxn_6x16_instances<ALayout, BLayout>;
carlushuang's avatar
carlushuang committed
351
352
    // using thread_gemm_instance = thread_gemm_avx2_mxn_4x24_instances<ALayout, BLayout>;
    bool found = false;
353
354
355

    ck::static_for<0, std::tuple_size_v<thread_gemm_instance>, 1>{}([&](auto i) {
        using uk_type = std::tuple_element_t<i, thread_gemm_instance>;
356
        if(m % uk_type::ThreadMr != 0 || n % uk_type::ThreadNr != 0)
357
            return;
carlushuang's avatar
carlushuang committed
358
359
360
361
362
        // if((m != uk_type::ThreadMr && std::is_same<typename uk_type::MatrixALayout, Col>::value)
        // ||
        //    (n != uk_type::ThreadNr && std::is_same<typename uk_type::MatrixBLayout, Row>::value))
        //     // only k is the fast changing dim of A/B can we do muldiplt m, n
        //     return;
363

364
365
366
        if(found)
            return;

367
368
369
370
371
372
373
374
375
376
377
378
        test_ukernel<FloatA, FloatB, ALayout, BLayout>(uk_type{},
                                                       reinterpret_cast<FloatA*>(a_mem.mpDeviceBuf),
                                                       reinterpret_cast<FloatB*>(b_mem.mpDeviceBuf),
                                                       reinterpret_cast<float*>(c_mem.mpDeviceBuf),
                                                       alpha,
                                                       m,
                                                       n,
                                                       k);

        bool is_valid = valid_vector(reinterpret_cast<float*>(c_mem_ref.mpDeviceBuf),
                                     reinterpret_cast<float*>(c_mem.mpDeviceBuf),
                                     m * n);
379
        printf("vald:%s\n", is_valid ? "y" : "n");
380
        found = true;
381
382
383
384
385
    });
}

int main(int argc, char** argv)
{
386
387
    int m       = 4;
    int n       = 24;
388
389
390
391
392
393
394
395
396
397
398
399
400
    int k       = 64;
    float alpha = 1.0f;
    if(argc > 3)
    {
        m = std::atoi(argv[1]);
        n = std::atoi(argv[2]);
        k = std::atoi(argv[3]);
    }
    if(argc > 4)
    {
        alpha = std::atof(argv[4]);
    }
    dump_cache_hierarchy();
carlushuang's avatar
carlushuang committed
401
402
403
404
    if(std::getenv("OMP_NUM_THREADS") == nullptr)
        omp_set_num_threads(1);
    printf("max threads:%d\n", omp_get_max_threads());

carlushuang's avatar
carlushuang committed
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
    test_cpu_ukernel<AType, BType, Row, Row, thread_gemm_avx2_mxn_4x24_instances<Row, Row>>(
        alpha, m, n, k);
    test_cpu_ukernel<AType, BType, Row, Col, thread_gemm_avx2_mxn_4x24_instances<Row, Col>>(
        alpha, m, n, k);
    test_cpu_ukernel<AType, BType, Col, Row, thread_gemm_avx2_mxn_4x24_instances<Col, Row>>(
        alpha, m, n, k);
    test_cpu_ukernel<AType, BType, Col, Col, thread_gemm_avx2_mxn_4x24_instances<Col, Col>>(
        alpha, m, n, k);

    test_cpu_ukernel<AType, BType, Row, Row, thread_gemm_avx2_mxn_6x16_instances<Row, Row>>(
        alpha, m, n, k);
    test_cpu_ukernel<AType, BType, Row, Col, thread_gemm_avx2_mxn_6x16_instances<Row, Col>>(
        alpha, m, n, k);
    test_cpu_ukernel<AType, BType, Col, Row, thread_gemm_avx2_mxn_6x16_instances<Col, Row>>(
        alpha, m, n, k);
    test_cpu_ukernel<AType, BType, Col, Col, thread_gemm_avx2_mxn_6x16_instances<Col, Col>>(
        alpha, m, n, k);
422
}