cpu_gemm_uk.cpp 15.3 KB
Newer Older
1
2
3
4
5
6
7
8
#include <iostream>
#include <initializer_list>
#include <cstdlib>
#include <stdlib.h>
#include <string>
#include <sstream>
#include <tuple>
#include <memory>
carlushuang's avatar
carlushuang committed
9
#include <half.hpp>
10
11
#include "host_tensor.hpp"
#include "device.hpp"
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
#include "config.hpp"
#include "print.hpp"
#include "cpuid.hpp"
#include "threadwise_gemm_avx2.hpp"

#define ITERATE_THREAD_GEMM_AVX2_MXN_6X16_INSTANCE(FA, FB, FC, TA, TB, NT)   \
    ck::cpu::ThreadwiseGemmAvx2_MxN_6x16<FA, FB, FC, 6, 16, TA, TB, NT>,     \
        ck::cpu::ThreadwiseGemmAvx2_MxN_6x16<FA, FB, FC, 5, 16, TA, TB, NT>, \
        ck::cpu::ThreadwiseGemmAvx2_MxN_6x16<FA, FB, FC, 4, 16, TA, TB, NT>, \
        ck::cpu::ThreadwiseGemmAvx2_MxN_6x16<FA, FB, FC, 3, 16, TA, TB, NT>, \
        ck::cpu::ThreadwiseGemmAvx2_MxN_6x16<FA, FB, FC, 2, 16, TA, TB, NT>, \
        ck::cpu::ThreadwiseGemmAvx2_MxN_6x16<FA, FB, FC, 1, 16, TA, TB, NT>, \
        ck::cpu::ThreadwiseGemmAvx2_MxN_6x16<FA, FB, FC, 6, 8, TA, TB, NT>,  \
        ck::cpu::ThreadwiseGemmAvx2_MxN_6x16<FA, FB, FC, 5, 8, TA, TB, NT>,  \
        ck::cpu::ThreadwiseGemmAvx2_MxN_6x16<FA, FB, FC, 4, 8, TA, TB, NT>,  \
        ck::cpu::ThreadwiseGemmAvx2_MxN_6x16<FA, FB, FC, 3, 8, TA, TB, NT>,  \
        ck::cpu::ThreadwiseGemmAvx2_MxN_6x16<FA, FB, FC, 2, 8, TA, TB, NT>,  \
        ck::cpu::ThreadwiseGemmAvx2_MxN_6x16<FA, FB, FC, 1, 8, TA, TB, NT>

carlushuang's avatar
carlushuang committed
31
//#define ITERATE_THREAD_GEMM_AVX2_MXN_6X16_INSTANCE(FA, FB, FC, TA, TB, NT)  \
32
33
//     ck::cpu::ThreadwiseGemmAvx2_MxN_6x16<FA, FB, FC,  6, 16,  TA,  TB,  NT>

carlushuang's avatar
carlushuang committed
34
35
36
37
38
39
40
41
42
43
44
45
46
47
#define ITERATE_THREAD_GEMM_AVX2_MXN_4X24_INSTANCE(FA, FB, FC, TA, TB, NT)   \
    ck::cpu::ThreadwiseGemmAvx2_MxN_4x24<FA, FB, FC, 4, 24, TA, TB, NT>,     \
        ck::cpu::ThreadwiseGemmAvx2_MxN_4x24<FA, FB, FC, 3, 24, TA, TB, NT>, \
        ck::cpu::ThreadwiseGemmAvx2_MxN_4x24<FA, FB, FC, 2, 24, TA, TB, NT>, \
        ck::cpu::ThreadwiseGemmAvx2_MxN_4x24<FA, FB, FC, 1, 24, TA, TB, NT>, \
        ck::cpu::ThreadwiseGemmAvx2_MxN_4x24<FA, FB, FC, 4, 16, TA, TB, NT>, \
        ck::cpu::ThreadwiseGemmAvx2_MxN_4x24<FA, FB, FC, 3, 16, TA, TB, NT>, \
        ck::cpu::ThreadwiseGemmAvx2_MxN_4x24<FA, FB, FC, 2, 16, TA, TB, NT>, \
        ck::cpu::ThreadwiseGemmAvx2_MxN_4x24<FA, FB, FC, 1, 16, TA, TB, NT>, \
        ck::cpu::ThreadwiseGemmAvx2_MxN_4x24<FA, FB, FC, 4, 8, TA, TB, NT>,  \
        ck::cpu::ThreadwiseGemmAvx2_MxN_4x24<FA, FB, FC, 3, 8, TA, TB, NT>,  \
        ck::cpu::ThreadwiseGemmAvx2_MxN_4x24<FA, FB, FC, 2, 8, TA, TB, NT>,  \
        ck::cpu::ThreadwiseGemmAvx2_MxN_4x24<FA, FB, FC, 1, 8, TA, TB, NT>

48
49
50
using Row = ck::tensor_layout::gemm::RowMajor;
using Col = ck::tensor_layout::gemm::ColumnMajor;

carlushuang's avatar
carlushuang committed
51
52
53
54
55
56
// using AType = half_float::half;
// using BType = half_float::half;
using AType = float;
using BType = float;
using CType = float;

57
template <typename ALayout, typename BLayout>
58
59
using thread_gemm_avx2_mxn_6x16_instances = std::tuple<
    // clang-format off
60
    //                                        FloatA FloatB FloatC  ALayout  BLayout NTStore
carlushuang's avatar
carlushuang committed
61
62
63
64
    ITERATE_THREAD_GEMM_AVX2_MXN_6X16_INSTANCE( AType, BType, CType, ALayout, BLayout, false),
    ITERATE_THREAD_GEMM_AVX2_MXN_6X16_INSTANCE( AType, BType, CType, ALayout, BLayout, false),
    ITERATE_THREAD_GEMM_AVX2_MXN_6X16_INSTANCE( AType, BType, CType, ALayout, BLayout, false),
    ITERATE_THREAD_GEMM_AVX2_MXN_6X16_INSTANCE( AType, BType, CType, ALayout, BLayout, false)
65

carlushuang's avatar
carlushuang committed
66
    // ITERATE_THREAD_GEMM_AVX2_MXN_6X16_INSTANCE(AType, BType, CType,    ALayout,    BLayout, false)
67
68
69
    // clang-format on
    >;

carlushuang's avatar
carlushuang committed
70
71
72
73
template <typename ALayout, typename BLayout>
using thread_gemm_avx2_mxn_4x24_instances = std::tuple<
    // clang-format off
    //                                        FloatA FloatB FloatC  ALayout  BLayout NTStore
carlushuang's avatar
carlushuang committed
74
75
76
77
    ITERATE_THREAD_GEMM_AVX2_MXN_4X24_INSTANCE( AType, BType, CType, ALayout, BLayout, false),
    ITERATE_THREAD_GEMM_AVX2_MXN_4X24_INSTANCE( AType, BType, CType, ALayout, BLayout, false),
    ITERATE_THREAD_GEMM_AVX2_MXN_4X24_INSTANCE( AType, BType, CType, ALayout, BLayout, false),
    ITERATE_THREAD_GEMM_AVX2_MXN_4X24_INSTANCE( AType, BType, CType, ALayout, BLayout, false)
carlushuang's avatar
carlushuang committed
78
79
80
    // clang-format on
    >;

81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
void dump_cache_hierarchy()
{
    auto dump_cache_type = [&](const ck::cpu::cpuid_cache_type& type) {
        if(type == ck::cpu::cpuid_cache_type_dcache)
            printf("data cache");
        else if(type == ck::cpu::cpuid_cache_type_icache)
            printf("inst cache");
        else if(type == ck::cpu::cpuid_cache_type_unified)
            printf("unif cache");
    };
    auto dump_cache_detail = [&](const ck::cpu::cpuid_cache_detail& detail) {
        dump_cache_type(static_cast<const ck::cpu::cpuid_cache_type>(detail.type));
        printf(" size:%u, cache_line:%u, associativity:%u, sets:%u, partitions:%u, shared by "
               "procs:%u(%u)\n",
               detail.size,
               detail.cache_line_size,
               detail.associativity,
               detail.sets,
               detail.partitions,
               detail.shared_by_procs,
               detail.cores_per_socket);
    };

    ck::cpu::cpuid_cache_hierarchy cache = ck::cpu::cpuid_query_cache();
    if(cache.l1d.size != 0)
    {
        printf("l1 ");
        dump_cache_detail(cache.l1d);
    }
    if(cache.l1i.size != 0)
    {
        printf("l1 ");
        dump_cache_detail(cache.l1i);
    }
    if(cache.l2.size != 0)
    {
        printf("l2 ");
        dump_cache_detail(cache.l2);
    }
    if(cache.l3.size != 0)
    {
        printf("l3 ");
        dump_cache_detail(cache.l3);
    }
    if(cache.l4.size != 0)
    {
        printf("l4 ");
        dump_cache_detail(cache.l4);
    }
}

template <typename T>
void rand_vector(T* v, int elem)
{
    int i;

    static int flag = 0;
    if(!flag)
    {
        srand(time(nullptr));
        flag = 1;
    }

    for(i = 0; i < elem; i++)
    {
        v[i] = (static_cast<T>(rand() % 100)) / 100.0f;
    }
}

bool valid_vector(const float* ref, const float* rhs, uint32_t elem)
{
    float rtol   = 1e-5;
    float atol   = 1e-8;
    uint32_t err = 0;
    for(uint32_t i = 0; i < elem; i++)
    {
        float diff = std::abs(ref[i] - rhs[i]);
        if(diff > atol + rtol * std::abs(ref[i]))
        {
            printf("diff at %u, ref:%f, rhs:%f\n", i, ref[i], rhs[i]);
            err++;
        }
    }

    return err == 0;
}

carlushuang's avatar
carlushuang committed
168
169
170
template <typename FloatA, typename FloatB, typename ALayout, typename BLayout>
void ref_cpu_gemm_uk(
    const FloatA* a, const FloatB* b, float* c, float alpha, uint32_t m, uint32_t n, uint32_t k)
171
{
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
    auto f_host_2d_tensor_descriptor =
        [](std::size_t row, std::size_t col, std::size_t stride, auto layout) {
            if(std::is_same<decltype(layout), Row>::value)
            {
                return HostTensorDescriptor(std::vector<std::size_t>({row, col}),
                                            std::vector<std::size_t>({stride, 1}));
            }
            else
            {
                return HostTensorDescriptor(std::vector<std::size_t>({row, col}),
                                            std::vector<std::size_t>({1, stride}));
            }
        };

    auto f_host_vectored_tensor_descriptor =
        [](std::size_t row, std::size_t col, std::size_t vec, std::size_t stride) {
            // only valid in row major. stride is for each row, contains vector size
            return HostTensorDescriptor(std::vector<std::size_t>({row, col, vec}),
                                        std::vector<std::size_t>({stride, vec, 1}));
        };

    std::size_t lda = std::is_same<Row, ALayout>::value ? k : m;     // in unit of element
    std::size_t ldb = std::is_same<Row, BLayout>::value ? n : k * 8; // in unit of element
    std::size_t ldc = n;
    HostTensorDescriptor a_m_k = f_host_2d_tensor_descriptor(m, n, lda, ALayout{});
    HostTensorDescriptor b_k_n = std::is_same<Row, BLayout>::value
                                     ? f_host_2d_tensor_descriptor(k, n, ldb, BLayout{})
                                     : f_host_vectored_tensor_descriptor(n / 8, k, 8, ldb);
    HostTensorDescriptor c_m_n = f_host_2d_tensor_descriptor(m, n, ldc, Row{});
201
202
203
204
205
206
207
208

    for(uint32_t im = 0; im < m; im++)
    {
        for(uint32_t in = 0; in < n; in++)
        {
            float acc = .0f;
            for(uint32_t ik = 0; ik < k; ik++)
            {
209
210
211
212
213
                acc += static_cast<float>(a[a_m_k.GetOffsetFromMultiIndex(im, ik)]) *
                       (std::is_same<Row, BLayout>::value
                            ? static_cast<float>(b[b_k_n.GetOffsetFromMultiIndex(ik, in)])
                            : static_cast<float>(
                                  b[b_k_n.GetOffsetFromMultiIndex(in / 8, ik, in % 8)]));
214
215
            }
            acc *= alpha;
216
            c[c_m_n.GetOffsetFromMultiIndex(im, in)] = acc;
217
218
219
220
        }
    }
}

carlushuang's avatar
carlushuang committed
221
template <typename FloatA, typename FloatB, typename ALayout, typename BLayout, typename ukenrel_t>
222
void test_ukernel(ukenrel_t uk,
carlushuang's avatar
carlushuang committed
223
224
                  FloatA* mat_a,
                  FloatB* mat_b,
225
226
227
228
229
230
231
232
233
234
235
                  float* mat_c,
                  float alpha,
                  uint32_t m,
                  uint32_t n,
                  uint32_t k)
{
    ck::cpu::ThreadwiseGemmParam param;
    param.p_a   = mat_a;
    param.p_b   = mat_b;
    param.p_c   = mat_c;
    param.Kr    = k;
carlushuang's avatar
carlushuang committed
236
237
    param.lda   = (std::is_same<Row, ALayout>::value ? k : m) * sizeof(FloatA);
    param.ldb   = (std::is_same<Row, BLayout>::value ? n : k * 8) * sizeof(FloatB);
238
239
240
241
242
243
244
    param.ldc   = n * sizeof(float);
    param.alpha = alpha;

    auto invoke_uk = [&]() {
        if constexpr(std::is_same<Row, ALayout>::value && std::is_same<Row, BLayout>::value)
        {
            assert(m % uk.Mr_ == 0 && n == uk.Nr_);
carlushuang's avatar
carlushuang committed
245
246
247
248
            FloatA* p_a = mat_a;
            float* p_c  = mat_c;
            param.p_a   = p_a;
            param.p_c   = p_c;
249
250
251
252
253
254
255
256
257
258
259
260
            for(uint32_t i_m = 0; i_m < m; i_m += uk.Mr_)
            {
                uk.Run(&param);
                p_a += uk.Mr_ * k;
                p_c += uk.Mr_ * n;
                param.p_a = p_a;
                param.p_c = p_c;
            }
        }
        else if constexpr(std::is_same<Row, ALayout>::value && std::is_same<Col, BLayout>::value)
        {
            assert(m % uk.Mr_ == 0 && n % uk.Nr_ == 0);
carlushuang's avatar
carlushuang committed
261
262
263
264
265
            FloatA* p_a = mat_a;
            float* p_c  = mat_c;
            param.p_a   = p_a;
            param.p_b   = mat_b;
            param.p_c   = p_c;
266
267
            for(uint32_t i_m = 0; i_m < m; i_m += uk.Mr_)
            {
carlushuang's avatar
carlushuang committed
268
269
                float* p_c_n  = p_c;
                FloatB* p_b_n = mat_b;
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
                for(uint32_t i_n = 0; i_n < n; i_n += uk.Nr_)
                {
                    uk.Run(&param);
                    p_b_n += uk.Nr_ * k; // Nr_/8*k*8
                    p_c_n += uk.Nr_;
                    param.p_b = p_b_n;
                    param.p_c = p_c_n;
                }
                p_a += uk.Mr_ * k;
                p_c += uk.Mr_ * n;
                param.p_a = p_a;
                param.p_b = mat_b;
                param.p_c = p_c;
            }
        }
        else if constexpr(std::is_same<Col, ALayout>::value && std::is_same<Row, BLayout>::value)
        {
            assert(m == uk.Mr_ && n == uk.Nr_);
            uk.Run(&param);
        }
        else
        {
            assert(m % uk.Mr_ == 0 && n % uk.Nr_ == 0);
carlushuang's avatar
carlushuang committed
293
294
295
296
            FloatB* p_b = mat_b;
            float* p_c  = mat_c;
            param.p_b   = p_b;
            param.p_c   = p_c;
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
            for(uint32_t i_n = 0; i_n < n; i_n += uk.Nr_)
            {
                uk.Run(&param);
                p_b += uk.Nr_ * k; // Nr_/8*k*8
                p_c += uk.Nr_;
                param.p_b = p_b;
                param.p_c = p_c;
            }
        }
    };

    printf("gemm_uk_%dx%d_%c%c: ", uk.Mr_, uk.Nr_, ALayout::name[0], BLayout::name[0]);
    fflush(stdout);
    // printf("%s: ", typeid(uk).name());fflush(stdout);
    memset(mat_c, 0, m * n * sizeof(float));

    int repeat = 7e10 / (2 * m * n * k);

    for(int i = 0; i < (repeat / 5); i++)
    {
        invoke_uk();
    }

320
321
322
    WallTimer timer;

    timer.Start();
323
324
325
326
    for(int i = 0; i < repeat; i++)
    {
        invoke_uk();
    }
327
    timer.End();
328

329
330
    float us     = timer.GetElapsedTime() * 1e3 / repeat;
    float gflops = static_cast<float>(2 * m * n * k) * 1e-3 / us;
331
332
333
334
335
336
337
338
339

    memset(mat_c, 0, m * n * sizeof(float));
    invoke_uk();

    printf("m:%u, n:%u, k:%u, alpha:%f, cost:%lfus, GFLOPS:%lf, ", m, n, k, alpha, us, gflops);
    fflush(stdout);
}

// implement small ukernel on L1
carlushuang's avatar
carlushuang committed
340
template <typename FloatA, typename FloatB, typename ALayout, typename BLayout>
341
342
343
void test_cpu_ukernel(float alpha, uint32_t m, uint32_t n, uint32_t k)
{

344
345
346
347
    DeviceAlignedMemCPU a_mem(m * k * sizeof(FloatA), 32);
    DeviceAlignedMemCPU b_mem(k * n * sizeof(FloatB), 32);
    DeviceAlignedMemCPU c_mem(m * n * sizeof(float), 32);
    DeviceAlignedMemCPU c_mem_ref(m * n * sizeof(float), 32);
348

349
350
351
    c_mem_ref.SetZero();
    rand_vector(reinterpret_cast<FloatA*>(a_mem.mpDeviceBuf), m * k);
    rand_vector(reinterpret_cast<FloatB*>(b_mem.mpDeviceBuf), k * n);
352

353
354
355
356
357
358
359
360
    ref_cpu_gemm_uk<FloatA, FloatB, ALayout, BLayout>(
        reinterpret_cast<FloatA*>(a_mem.mpDeviceBuf),
        reinterpret_cast<FloatB*>(b_mem.mpDeviceBuf),
        reinterpret_cast<float*>(c_mem_ref.mpDeviceBuf),
        alpha,
        m,
        n,
        k);
361

362
363
364
    // using thread_gemm_instance = thread_gemm_avx2_mxn_6x16_instances<ALayout, BLayout>;
    using thread_gemm_instance = thread_gemm_avx2_mxn_4x24_instances<ALayout, BLayout>;
    bool found                 = false;
365
366
367

    ck::static_for<0, std::tuple_size_v<thread_gemm_instance>, 1>{}([&](auto i) {
        using uk_type = std::tuple_element_t<i, thread_gemm_instance>;
368
369
370
371
372
373
374
        if(m % uk_type::Mr_ != 0 || n % uk_type::Nr_ != 0)
            return;
        if((m != uk_type::Mr_ && std::is_same<typename uk_type::ALayout_, Col>::value) ||
           (n != uk_type::Nr_ && std::is_same<typename uk_type::BLayout_, Row>::value))
            // only k is the fast changing dim of A/B can we do muldiplt m, n
            return;

375
376
377
        if(found)
            return;

378
379
380
381
382
383
384
385
386
387
388
389
        test_ukernel<FloatA, FloatB, ALayout, BLayout>(uk_type{},
                                                       reinterpret_cast<FloatA*>(a_mem.mpDeviceBuf),
                                                       reinterpret_cast<FloatB*>(b_mem.mpDeviceBuf),
                                                       reinterpret_cast<float*>(c_mem.mpDeviceBuf),
                                                       alpha,
                                                       m,
                                                       n,
                                                       k);

        bool is_valid = valid_vector(reinterpret_cast<float*>(c_mem_ref.mpDeviceBuf),
                                     reinterpret_cast<float*>(c_mem.mpDeviceBuf),
                                     m * n);
390
        printf("vald:%s\n", is_valid ? "y" : "n");
391
        found = true;
392
393
394
395
396
    });
}

int main(int argc, char** argv)
{
397
398
    int m       = 4;
    int n       = 24;
399
400
401
402
403
404
405
406
407
408
409
410
411
    int k       = 64;
    float alpha = 1.0f;
    if(argc > 3)
    {
        m = std::atoi(argv[1]);
        n = std::atoi(argv[2]);
        k = std::atoi(argv[3]);
    }
    if(argc > 4)
    {
        alpha = std::atof(argv[4]);
    }
    dump_cache_hierarchy();
carlushuang's avatar
carlushuang committed
412
413
414
415
    test_cpu_ukernel<AType, BType, Row, Row>(alpha, m, n, k);
    test_cpu_ukernel<AType, BType, Row, Col>(alpha, m, n, k);
    test_cpu_ukernel<AType, BType, Col, Row>(alpha, m, n, k);
    test_cpu_ukernel<AType, BType, Col, Col>(alpha, m, n, k);
416
}