"test/include/conv_test_util.hpp" did not exist on "2206136628827a028384ebf07c225327dc9e62a8"
profile_convnd_fwd.cpp 12.1 KB
Newer Older
Chao Liu's avatar
Chao Liu committed
1
2
3
// SPDX-License-Identifier: MIT
// Copyright (c) 2018-2022, Advanced Micro Devices, Inc. All rights reserved.

4
#include <cstdlib>
5
#include <functional>
6
7
8
9
10
#include <iostream>
#include <memory>
#include <string>
#include <vector>

Chao Liu's avatar
Chao Liu committed
11
12
#include "ck/tensor_operation/gpu/device/tensor_layout.hpp"
#include "ck/tensor_operation/gpu/element/element_wise_operation.hpp"
Chao Liu's avatar
Chao Liu committed
13

Chao Liu's avatar
Chao Liu committed
14
15
16
#include "ck/library/utility/conv_util.hpp"
#include "ck/library/utility/fill.hpp"

17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
namespace {

enum struct ConvDataType
{
    F32_F32_F32,    // 0
    F16_F16_F16,    // 1
    BF16_BF16_BF16, // 2
    INT8_INT8_INT8, // 3
};

enum struct ConvDataLayout
{
    NCHW, // 0
    NHWC, // 1
};

namespace ctl = ck::tensor_layout::convolution;

template <int NDim, ConvDataLayout DataLayout>
struct ConvolutionLayouts;

template <>
struct ConvolutionLayouts<1, ConvDataLayout::NHWC>
{
    typedef ctl::NWC Input;
    typedef ctl::KXC Weight;
    typedef ctl::NWK Output;
};
template <>
struct ConvolutionLayouts<2, ConvDataLayout::NHWC>
{
    typedef ctl::NHWC Input;
    typedef ctl::KYXC Weight;
    typedef ctl::NHWK Output;
};
template <>
struct ConvolutionLayouts<3, ConvDataLayout::NHWC>
{
    typedef ctl::NDHWC Input;
    typedef ctl::KZYXC Weight;
    typedef ctl::NDHWK Output;
};
template <>
struct ConvolutionLayouts<1, ConvDataLayout::NCHW>
{
    typedef ctl::NCW Input;
    typedef ctl::KCX Weight;
    typedef ctl::NKW Output;
};
template <>
struct ConvolutionLayouts<2, ConvDataLayout::NCHW>
{
    typedef ctl::NCHW Input;
    typedef ctl::KCYX Weight;
    typedef ctl::NKHW Output;
};
template <>
struct ConvolutionLayouts<3, ConvDataLayout::NCHW>
{
    typedef ctl::NCDHW Input;
    typedef ctl::KCZYX Weight;
    typedef ctl::NKDHW Output;
};

void print_use_msg()
{
    std::cout << "arg1: tensor operation (conv_fwd: ForwardConvolution)\n"
              << "arg2: data type (0: fp32; 1: fp16, 2: bf16, 3: int8)\n"
              << "arg3: data layout (0: NCHW; 1: NHWC)\n"
              << "arg4: verification (0=no, 1=yes)\n"
              << "arg5: initialization (0=no init, 1=integer value, 2=decimal value)\n"
              << "arg6: print tensor value (0: no; 1: yes)\n"
              << "arg7: run kernel # of times (>1)\n"
              << "arg8: N spatial dimensions (default 2)\n"
              << "Following arguments (depending on number of spatial dims):\n"
              << " N, K, C, \n"
              << " <filter spatial dimensions>, (ie Y, X for 2D)\n"
              << " <input image spatial dimensions>, (ie Hi, Wi for 2D)\n"
              << " <strides>, (ie Sy, Sx for 2D)\n"
              << " <dilations>, (ie Dy, Dx for 2D)\n"
              << " <left padding>, (ie LeftPy, LeftPx for 2D)\n"
              << " <right padding>, (ie RightPy, RightPx for 2D)\n"
              << std::endl;
}

ck::utils::conv::ConvParams parse_params(int num_dim_spatial, int argc, char* argv[])
{
    // (N, K, C) + num_dim_spatial * 6 (filter, input, strides, dilations, pad left, pad right)
    int conv_args     = 3 + num_dim_spatial * 6;
    int cmdline_nargs = conv_args + 9;
    if(cmdline_nargs != argc)
    {
        print_use_msg();
        exit(1);
    }
    int arg_idx = 9;

    return ck::utils::conv::parse_conv_params(num_dim_spatial, arg_idx, argv);
}

template <int NDim,
          typename InDataType,
          typename WeiDataType,
          typename OutDataType,
          typename ConvLayouts>
void profile_convnd_instances_impl(const ck::utils::conv::ConvParams& params,
                                   bool do_verification,
                                   bool do_log,
JD's avatar
JD committed
125
                                   bool time_kernel,
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
                                   int init_method,
                                   ConvLayouts)
{
    using namespace std::placeholders;
    using namespace ck::utils;

    std::unique_ptr<OpInstance<OutDataType, InDataType, WeiDataType>> conv_instance;

    switch(init_method)
    {
    case 0:
        conv_instance =
            std::make_unique<conv::ConvFwdOpInstance<InDataType,
                                                     WeiDataType,
                                                     OutDataType,
                                                     typename ConvLayouts::Input,
                                                     typename ConvLayouts::Weight,
                                                     typename ConvLayouts::Output>>(params, false);
        break;
    case 1:
        conv_instance = std::make_unique<
            conv::ConvFwdOpInstance<InDataType,
                                    WeiDataType,
                                    OutDataType,
                                    typename ConvLayouts::Input,
                                    typename ConvLayouts::Weight,
                                    typename ConvLayouts::Output,
                                    ck::tensor_operation::element_wise::PassThrough,
                                    ck::tensor_operation::element_wise::PassThrough,
                                    ck::tensor_operation::element_wise::PassThrough,
156
157
158
159
160
161
                                    ck::utils::FillUniformDistributionIntegerValue<int>,
                                    ck::utils::FillUniformDistributionIntegerValue<int>>>(
            params,
            true,
            ck::utils::FillUniformDistributionIntegerValue<int>{},
            ck::utils::FillUniformDistributionIntegerValue<int>{});
162
163
164
165
166
167
168
169
170
171
172
173
        break;
    case 2:
        conv_instance = std::make_unique<
            conv::ConvFwdOpInstance<InDataType,
                                    WeiDataType,
                                    OutDataType,
                                    typename ConvLayouts::Input,
                                    typename ConvLayouts::Weight,
                                    typename ConvLayouts::Output,
                                    ck::tensor_operation::element_wise::PassThrough,
                                    ck::tensor_operation::element_wise::PassThrough,
                                    ck::tensor_operation::element_wise::PassThrough,
174
175
                                    ck::utils::FillUniformDistribution<InDataType>,
                                    ck::utils::FillUniformDistribution<WeiDataType>>>(
176
177
            params,
            true,
178
179
            ck::utils::FillUniformDistribution<InDataType>{},
            ck::utils::FillUniformDistribution<WeiDataType>{});
180
181
182
183
184
185
186
187
188
189
        break;
    default: throw std::runtime_error("Unsupported init method!");
    }

    auto reference_conv_fwd_fun = std::bind(
        conv::run_reference_convolution_forward<NDim, InDataType, WeiDataType, OutDataType>,
        params,
        _1,
        _2,
        _3);
190
191
192
193

    OpInstanceRunEngine<InDataType, WeiDataType, OutDataType> run_engine(
        *conv_instance, reference_conv_fwd_fun, do_verification);

194
195
    auto best_conf = run_engine.Profile(
        conv::ConvolutionFwdInstances<InDataType, WeiDataType, OutDataType>::template Get<NDim>(),
JD's avatar
JD committed
196
        time_kernel,
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
        do_verification,
        do_log);

    std::cout << "Best configuration parameters:"
              << "\nname: " << best_conf.best_op_name << "\navg_time: " << best_conf.best_avg_time
              << "\ntflops: " << best_conf.best_tflops << "\nGB/s: " << best_conf.best_gb_per_sec
              << std::endl;
}

template <int NDim>
void profile_convnd_instances(ConvDataType data_type,
                              ConvDataLayout data_layout,
                              const ck::utils::conv::ConvParams& params,
                              bool do_verification,
                              bool do_log,
JD's avatar
JD committed
212
                              bool time_kernel,
213
214
215
216
217
218
219
220
221
222
223
224
                              int init_method)
{
    switch(data_layout)
    {
    case ConvDataLayout::NHWC: {
        switch(data_type)
        {
        case ConvDataType::F32_F32_F32:
            profile_convnd_instances_impl<NDim, float, float, float>(
                params,
                do_verification,
                do_log,
JD's avatar
JD committed
225
                time_kernel,
226
227
228
229
230
231
232
233
                init_method,
                ConvolutionLayouts<NDim, ConvDataLayout::NHWC>{});
            break;
        case ConvDataType::F16_F16_F16:
            profile_convnd_instances_impl<NDim, ck::half_t, ck::half_t, ck::half_t>(
                params,
                do_verification,
                do_log,
JD's avatar
JD committed
234
                time_kernel,
235
236
237
238
239
240
241
242
                init_method,
                ConvolutionLayouts<NDim, ConvDataLayout::NHWC>{});
            break;
        case ConvDataType::BF16_BF16_BF16:
            profile_convnd_instances_impl<NDim, ck::bhalf_t, ck::bhalf_t, ck::bhalf_t>(
                params,
                do_verification,
                do_log,
JD's avatar
JD committed
243
                time_kernel,
244
245
246
247
248
249
250
251
                init_method,
                ConvolutionLayouts<NDim, ConvDataLayout::NHWC>{});
            break;
        case ConvDataType::INT8_INT8_INT8:
            profile_convnd_instances_impl<NDim, int8_t, int8_t, int8_t>(
                params,
                do_verification,
                do_log,
JD's avatar
JD committed
252
                time_kernel,
253
254
255
256
257
258
259
260
261
262
263
264
265
266
                init_method,
                ConvolutionLayouts<NDim, ConvDataLayout::NHWC>{});
            break;
        }
        break;
    }
    case ConvDataLayout::NCHW: {
        switch(data_type)
        {
        case ConvDataType::F32_F32_F32:
            profile_convnd_instances_impl<NDim, float, float, float>(
                params,
                do_verification,
                do_log,
JD's avatar
JD committed
267
                time_kernel,
268
269
270
271
272
273
274
275
                init_method,
                ConvolutionLayouts<NDim, ConvDataLayout::NCHW>{});
            break;
        case ConvDataType::F16_F16_F16:
            profile_convnd_instances_impl<NDim, ck::half_t, ck::half_t, ck::half_t>(
                params,
                do_verification,
                do_log,
JD's avatar
JD committed
276
                time_kernel,
277
278
279
280
281
282
283
284
                init_method,
                ConvolutionLayouts<NDim, ConvDataLayout::NCHW>{});
            break;
        case ConvDataType::BF16_BF16_BF16:
            profile_convnd_instances_impl<NDim, ck::bhalf_t, ck::bhalf_t, ck::bhalf_t>(
                params,
                do_verification,
                do_log,
JD's avatar
JD committed
285
                time_kernel,
286
287
288
289
290
291
292
293
                init_method,
                ConvolutionLayouts<NDim, ConvDataLayout::NCHW>{});
            break;
        case ConvDataType::INT8_INT8_INT8:
            profile_convnd_instances_impl<NDim, int8_t, int8_t, int8_t>(
                params,
                do_verification,
                do_log,
JD's avatar
JD committed
294
                time_kernel,
295
296
297
298
299
300
301
302
303
304
305
                init_method,
                ConvolutionLayouts<NDim, ConvDataLayout::NCHW>{});
            break;
        }
        break;
    }
    }
}

} // namespace

Chao Liu's avatar
Chao Liu committed
306
int profile_convnd_fwd(int argc, char* argv[])
307
308
309
310
311
312
313
314
{
    using namespace ck::utils::conv;

    ConvDataType data_type{ConvDataType::F32_F32_F32};
    ConvDataLayout data_layout{ConvDataLayout::NHWC};
    bool do_verification{true};
    int init_method{2};
    bool do_log{false};
JD's avatar
JD committed
315
    bool time_kernel{false};
316
317
318
319
320
321
322
323
324
325
326
327
328
    int num_dim_spatial{2};
    ConvParams params;

    if(argc >= 4)
    {
        data_type   = static_cast<ConvDataType>(std::stoi(argv[2]));
        data_layout = static_cast<ConvDataLayout>(std::stoi(argv[3]));
    }
    if(argc >= 9)
    {
        do_verification = std::stoi(argv[4]);
        init_method     = std::stoi(argv[5]);
        do_log          = std::stoi(argv[6]);
JD's avatar
JD committed
329
        time_kernel     = std::stoi(argv[7]);
330
331
332
333
334
335
336
337
338
339
340
341
342
        num_dim_spatial = std::stoi(argv[8]);
    }
    if(argc >= 10)
    {
        params = parse_params(num_dim_spatial, argc, argv);
    }

    // TODO Print nice message what is being profiled.

    switch(num_dim_spatial)
    {
    case 1:
        profile_convnd_instances<1>(
JD's avatar
JD committed
343
            data_type, data_layout, params, do_verification, do_log, time_kernel, init_method);
344
345
346
        break;
    case 2:
        profile_convnd_instances<2>(
JD's avatar
JD committed
347
            data_type, data_layout, params, do_verification, do_log, time_kernel, init_method);
348
349
350
        break;
    case 3:
        profile_convnd_instances<3>(
JD's avatar
JD committed
351
            data_type, data_layout, params, do_verification, do_log, time_kernel, init_method);
352
353
354
355
356
357
        break;
    default:
        throw std::runtime_error("profile_conv_fwd: unsupported num_dim_spatial value: " +
                                 std::to_string(num_dim_spatial));
    }

358
    return 0;
359
}