profile_convnd_fwd.cpp 12.2 KB
Newer Older
Chao Liu's avatar
Chao Liu committed
1
2
3
// SPDX-License-Identifier: MIT
// Copyright (c) 2018-2022, Advanced Micro Devices, Inc. All rights reserved.

4
#include <cstdlib>
5
#include <functional>
6
7
8
9
10
#include <iostream>
#include <memory>
#include <string>
#include <vector>

Chao Liu's avatar
Chao Liu committed
11
12
13
14
15
16
#include "ck/tensor_operation/gpu/device/tensor_layout.hpp"
#include "ck/tensor_operation/gpu/element/element_wise_operation.hpp"
#include "ck/library/utility/conv_util.hpp"
#include "ck/library/utility/fill.hpp"

#include "profiler/include/profile_convnd_fwd.hpp"
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125

namespace {

enum struct ConvDataType
{
    F32_F32_F32,    // 0
    F16_F16_F16,    // 1
    BF16_BF16_BF16, // 2
    INT8_INT8_INT8, // 3
};

enum struct ConvDataLayout
{
    NCHW, // 0
    NHWC, // 1
};

namespace ctl = ck::tensor_layout::convolution;

template <int NDim, ConvDataLayout DataLayout>
struct ConvolutionLayouts;

template <>
struct ConvolutionLayouts<1, ConvDataLayout::NHWC>
{
    typedef ctl::NWC Input;
    typedef ctl::KXC Weight;
    typedef ctl::NWK Output;
};
template <>
struct ConvolutionLayouts<2, ConvDataLayout::NHWC>
{
    typedef ctl::NHWC Input;
    typedef ctl::KYXC Weight;
    typedef ctl::NHWK Output;
};
template <>
struct ConvolutionLayouts<3, ConvDataLayout::NHWC>
{
    typedef ctl::NDHWC Input;
    typedef ctl::KZYXC Weight;
    typedef ctl::NDHWK Output;
};
template <>
struct ConvolutionLayouts<1, ConvDataLayout::NCHW>
{
    typedef ctl::NCW Input;
    typedef ctl::KCX Weight;
    typedef ctl::NKW Output;
};
template <>
struct ConvolutionLayouts<2, ConvDataLayout::NCHW>
{
    typedef ctl::NCHW Input;
    typedef ctl::KCYX Weight;
    typedef ctl::NKHW Output;
};
template <>
struct ConvolutionLayouts<3, ConvDataLayout::NCHW>
{
    typedef ctl::NCDHW Input;
    typedef ctl::KCZYX Weight;
    typedef ctl::NKDHW Output;
};

void print_use_msg()
{
    std::cout << "arg1: tensor operation (conv_fwd: ForwardConvolution)\n"
              << "arg2: data type (0: fp32; 1: fp16, 2: bf16, 3: int8)\n"
              << "arg3: data layout (0: NCHW; 1: NHWC)\n"
              << "arg4: verification (0=no, 1=yes)\n"
              << "arg5: initialization (0=no init, 1=integer value, 2=decimal value)\n"
              << "arg6: print tensor value (0: no; 1: yes)\n"
              << "arg7: run kernel # of times (>1)\n"
              << "arg8: N spatial dimensions (default 2)\n"
              << "Following arguments (depending on number of spatial dims):\n"
              << " N, K, C, \n"
              << " <filter spatial dimensions>, (ie Y, X for 2D)\n"
              << " <input image spatial dimensions>, (ie Hi, Wi for 2D)\n"
              << " <strides>, (ie Sy, Sx for 2D)\n"
              << " <dilations>, (ie Dy, Dx for 2D)\n"
              << " <left padding>, (ie LeftPy, LeftPx for 2D)\n"
              << " <right padding>, (ie RightPy, RightPx for 2D)\n"
              << std::endl;
}

ck::utils::conv::ConvParams parse_params(int num_dim_spatial, int argc, char* argv[])
{
    // (N, K, C) + num_dim_spatial * 6 (filter, input, strides, dilations, pad left, pad right)
    int conv_args     = 3 + num_dim_spatial * 6;
    int cmdline_nargs = conv_args + 9;
    if(cmdline_nargs != argc)
    {
        print_use_msg();
        exit(1);
    }
    int arg_idx = 9;

    return ck::utils::conv::parse_conv_params(num_dim_spatial, arg_idx, argv);
}

template <int NDim,
          typename InDataType,
          typename WeiDataType,
          typename OutDataType,
          typename ConvLayouts>
void profile_convnd_instances_impl(const ck::utils::conv::ConvParams& params,
                                   bool do_verification,
                                   bool do_log,
JD's avatar
JD committed
126
                                   bool time_kernel,
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
                                   int init_method,
                                   ConvLayouts)
{
    using namespace std::placeholders;
    using namespace ck::utils;

    std::unique_ptr<OpInstance<OutDataType, InDataType, WeiDataType>> conv_instance;

    switch(init_method)
    {
    case 0:
        conv_instance =
            std::make_unique<conv::ConvFwdOpInstance<InDataType,
                                                     WeiDataType,
                                                     OutDataType,
                                                     typename ConvLayouts::Input,
                                                     typename ConvLayouts::Weight,
                                                     typename ConvLayouts::Output>>(params, false);
        break;
    case 1:
        conv_instance = std::make_unique<
            conv::ConvFwdOpInstance<InDataType,
                                    WeiDataType,
                                    OutDataType,
                                    typename ConvLayouts::Input,
                                    typename ConvLayouts::Weight,
                                    typename ConvLayouts::Output,
                                    ck::tensor_operation::element_wise::PassThrough,
                                    ck::tensor_operation::element_wise::PassThrough,
                                    ck::tensor_operation::element_wise::PassThrough,
157
158
159
160
161
162
                                    ck::utils::FillUniformDistributionIntegerValue<int>,
                                    ck::utils::FillUniformDistributionIntegerValue<int>>>(
            params,
            true,
            ck::utils::FillUniformDistributionIntegerValue<int>{},
            ck::utils::FillUniformDistributionIntegerValue<int>{});
163
164
165
166
167
168
169
170
171
172
173
174
        break;
    case 2:
        conv_instance = std::make_unique<
            conv::ConvFwdOpInstance<InDataType,
                                    WeiDataType,
                                    OutDataType,
                                    typename ConvLayouts::Input,
                                    typename ConvLayouts::Weight,
                                    typename ConvLayouts::Output,
                                    ck::tensor_operation::element_wise::PassThrough,
                                    ck::tensor_operation::element_wise::PassThrough,
                                    ck::tensor_operation::element_wise::PassThrough,
175
176
                                    ck::utils::FillUniformDistribution<InDataType>,
                                    ck::utils::FillUniformDistribution<WeiDataType>>>(
177
178
            params,
            true,
179
180
            ck::utils::FillUniformDistribution<InDataType>{},
            ck::utils::FillUniformDistribution<WeiDataType>{});
181
182
183
184
185
186
187
188
189
190
        break;
    default: throw std::runtime_error("Unsupported init method!");
    }

    auto reference_conv_fwd_fun = std::bind(
        conv::run_reference_convolution_forward<NDim, InDataType, WeiDataType, OutDataType>,
        params,
        _1,
        _2,
        _3);
191
192
193
194

    OpInstanceRunEngine<InDataType, WeiDataType, OutDataType> run_engine(
        *conv_instance, reference_conv_fwd_fun, do_verification);

195
196
    auto best_conf = run_engine.Profile(
        conv::ConvolutionFwdInstances<InDataType, WeiDataType, OutDataType>::template Get<NDim>(),
JD's avatar
JD committed
197
        time_kernel,
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
        do_verification,
        do_log);

    std::cout << "Best configuration parameters:"
              << "\nname: " << best_conf.best_op_name << "\navg_time: " << best_conf.best_avg_time
              << "\ntflops: " << best_conf.best_tflops << "\nGB/s: " << best_conf.best_gb_per_sec
              << std::endl;
}

template <int NDim>
void profile_convnd_instances(ConvDataType data_type,
                              ConvDataLayout data_layout,
                              const ck::utils::conv::ConvParams& params,
                              bool do_verification,
                              bool do_log,
JD's avatar
JD committed
213
                              bool time_kernel,
214
215
216
217
218
219
220
221
222
223
224
225
                              int init_method)
{
    switch(data_layout)
    {
    case ConvDataLayout::NHWC: {
        switch(data_type)
        {
        case ConvDataType::F32_F32_F32:
            profile_convnd_instances_impl<NDim, float, float, float>(
                params,
                do_verification,
                do_log,
JD's avatar
JD committed
226
                time_kernel,
227
228
229
230
231
232
233
234
                init_method,
                ConvolutionLayouts<NDim, ConvDataLayout::NHWC>{});
            break;
        case ConvDataType::F16_F16_F16:
            profile_convnd_instances_impl<NDim, ck::half_t, ck::half_t, ck::half_t>(
                params,
                do_verification,
                do_log,
JD's avatar
JD committed
235
                time_kernel,
236
237
238
239
240
241
242
243
                init_method,
                ConvolutionLayouts<NDim, ConvDataLayout::NHWC>{});
            break;
        case ConvDataType::BF16_BF16_BF16:
            profile_convnd_instances_impl<NDim, ck::bhalf_t, ck::bhalf_t, ck::bhalf_t>(
                params,
                do_verification,
                do_log,
JD's avatar
JD committed
244
                time_kernel,
245
246
247
248
249
250
251
252
                init_method,
                ConvolutionLayouts<NDim, ConvDataLayout::NHWC>{});
            break;
        case ConvDataType::INT8_INT8_INT8:
            profile_convnd_instances_impl<NDim, int8_t, int8_t, int8_t>(
                params,
                do_verification,
                do_log,
JD's avatar
JD committed
253
                time_kernel,
254
255
256
257
258
259
260
261
262
263
264
265
266
267
                init_method,
                ConvolutionLayouts<NDim, ConvDataLayout::NHWC>{});
            break;
        }
        break;
    }
    case ConvDataLayout::NCHW: {
        switch(data_type)
        {
        case ConvDataType::F32_F32_F32:
            profile_convnd_instances_impl<NDim, float, float, float>(
                params,
                do_verification,
                do_log,
JD's avatar
JD committed
268
                time_kernel,
269
270
271
272
273
274
275
276
                init_method,
                ConvolutionLayouts<NDim, ConvDataLayout::NCHW>{});
            break;
        case ConvDataType::F16_F16_F16:
            profile_convnd_instances_impl<NDim, ck::half_t, ck::half_t, ck::half_t>(
                params,
                do_verification,
                do_log,
JD's avatar
JD committed
277
                time_kernel,
278
279
280
281
282
283
284
285
                init_method,
                ConvolutionLayouts<NDim, ConvDataLayout::NCHW>{});
            break;
        case ConvDataType::BF16_BF16_BF16:
            profile_convnd_instances_impl<NDim, ck::bhalf_t, ck::bhalf_t, ck::bhalf_t>(
                params,
                do_verification,
                do_log,
JD's avatar
JD committed
286
                time_kernel,
287
288
289
290
291
292
293
294
                init_method,
                ConvolutionLayouts<NDim, ConvDataLayout::NCHW>{});
            break;
        case ConvDataType::INT8_INT8_INT8:
            profile_convnd_instances_impl<NDim, int8_t, int8_t, int8_t>(
                params,
                do_verification,
                do_log,
JD's avatar
JD committed
295
                time_kernel,
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
                init_method,
                ConvolutionLayouts<NDim, ConvDataLayout::NCHW>{});
            break;
        }
        break;
    }
    }
}

} // namespace

int ck::profiler::profile_convnd_fwd(int argc, char* argv[])
{
    using namespace ck::utils::conv;

    ConvDataType data_type{ConvDataType::F32_F32_F32};
    ConvDataLayout data_layout{ConvDataLayout::NHWC};
    bool do_verification{true};
    int init_method{2};
    bool do_log{false};
JD's avatar
JD committed
316
    bool time_kernel{false};
317
318
319
320
321
322
323
324
325
326
327
328
329
    int num_dim_spatial{2};
    ConvParams params;

    if(argc >= 4)
    {
        data_type   = static_cast<ConvDataType>(std::stoi(argv[2]));
        data_layout = static_cast<ConvDataLayout>(std::stoi(argv[3]));
    }
    if(argc >= 9)
    {
        do_verification = std::stoi(argv[4]);
        init_method     = std::stoi(argv[5]);
        do_log          = std::stoi(argv[6]);
JD's avatar
JD committed
330
        time_kernel     = std::stoi(argv[7]);
331
332
333
334
335
336
337
338
339
340
341
342
343
        num_dim_spatial = std::stoi(argv[8]);
    }
    if(argc >= 10)
    {
        params = parse_params(num_dim_spatial, argc, argv);
    }

    // TODO Print nice message what is being profiled.

    switch(num_dim_spatial)
    {
    case 1:
        profile_convnd_instances<1>(
JD's avatar
JD committed
344
            data_type, data_layout, params, do_verification, do_log, time_kernel, init_method);
345
346
347
        break;
    case 2:
        profile_convnd_instances<2>(
JD's avatar
JD committed
348
            data_type, data_layout, params, do_verification, do_log, time_kernel, init_method);
349
350
351
        break;
    case 3:
        profile_convnd_instances<3>(
JD's avatar
JD committed
352
            data_type, data_layout, params, do_verification, do_log, time_kernel, init_method);
353
354
355
356
357
358
        break;
    default:
        throw std::runtime_error("profile_conv_fwd: unsupported num_dim_spatial value: " +
                                 std::to_string(num_dim_spatial));
    }

359
    return 0;
360
}