profile_convnd_bwd_data_impl.hpp 17.8 KB
Newer Older
Chao Liu's avatar
Chao Liu committed
1
2
3
// SPDX-License-Identifier: MIT
// Copyright (c) 2018-2022, Advanced Micro Devices, Inc. All rights reserved.

4
#pragma once
Chao Liu's avatar
Chao Liu committed
5
6
7
8
9
10
11
12
13
14
15

#include "ck/ck.hpp"
#include "ck/tensor_operation/gpu/device/tensor_layout.hpp"
#include "ck/tensor_operation/gpu/device/device_conv_bwd_data.hpp"
#include "ck/tensor_operation/gpu/element/element_wise_operation.hpp"

#include "ck/library/utility/conv_util.hpp"
#include "ck/library/host_tensor/device_memory.hpp"
#include "ck/library/host_tensor/host_tensor.hpp"
#include "ck/library/host_tensor/host_tensor_generator.hpp"
#include "ck/library/reference_tensor_operation/cpu/reference_conv_bwd_data.hpp"
16
17
18

using F16  = ck::half_t;
using F32  = float;
19
using BF16 = ck::bhalf_t;
20
using INT8 = int8_t;
Chao Liu's avatar
Chao Liu committed
21

22
23
24
namespace ck {
namespace tensor_operation {
namespace device {
25
namespace instance {
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56

using DeviceConvBwdDataNoOpPtr =
    DeviceConvBwdDataPtr<ck::tensor_operation::element_wise::PassThrough,
                         ck::tensor_operation::element_wise::PassThrough,
                         ck::tensor_operation::element_wise::PassThrough>;
void add_device_conv1d_bwd_data_xdl_nwc_kxc_nwk_f32_instances(
    std::vector<DeviceConvBwdDataNoOpPtr>&);
void add_device_conv1d_bwd_data_xdl_nwc_kxc_nwk_f16_instances(
    std::vector<DeviceConvBwdDataNoOpPtr>&);
void add_device_conv1d_bwd_data_xdl_nwc_kxc_nwk_bf16_instances(
    std::vector<DeviceConvBwdDataNoOpPtr>&);
void add_device_conv1d_bwd_data_xdl_nwc_kxc_nwk_int8_instances(
    std::vector<DeviceConvBwdDataNoOpPtr>&);

void add_device_conv2d_bwd_data_xdl_nhwc_kyxc_nhwk_f32_instances(
    std::vector<DeviceConvBwdDataNoOpPtr>&);
void add_device_conv2d_bwd_data_xdl_nhwc_kyxc_nhwk_f16_instances(
    std::vector<DeviceConvBwdDataNoOpPtr>&);
void add_device_conv2d_bwd_data_xdl_nhwc_kyxc_nhwk_bf16_instances(
    std::vector<DeviceConvBwdDataNoOpPtr>&);
void add_device_conv2d_bwd_data_xdl_nhwc_kyxc_nhwk_int8_instances(
    std::vector<DeviceConvBwdDataNoOpPtr>&);

void add_device_conv3d_bwd_data_xdl_ndhwc_kzyxc_ndhwk_f32_instances(
    std::vector<DeviceConvBwdDataNoOpPtr>&);
void add_device_conv3d_bwd_data_xdl_ndhwc_kzyxc_ndhwk_f16_instances(
    std::vector<DeviceConvBwdDataNoOpPtr>&);
void add_device_conv3d_bwd_data_xdl_ndhwc_kzyxc_ndhwk_bf16_instances(
    std::vector<DeviceConvBwdDataNoOpPtr>&);
void add_device_conv3d_bwd_data_xdl_ndhwc_kzyxc_ndhwk_int8_instances(
    std::vector<DeviceConvBwdDataNoOpPtr>&);
57
} // namespace instance
58
59
60
61
62
63
} // namespace device
} // namespace tensor_operation
} // namespace ck

namespace ck {
namespace profiler {
64
using DeviceConvBwdDataNoOpPtr = ck::tensor_operation::device::instance::DeviceConvBwdDataNoOpPtr;
65
66
67
68
69
70
71
72
73
74

template <typename InLayout>
HostTensorDescriptor get_input_host_tensor_descriptor(const std::vector<std::size_t>& dims,
                                                      int num_dim_spatial = 2)
{
    namespace tl = ck::tensor_layout::convolution;

    switch(num_dim_spatial)
    {
    case 3: {
75
        return ck::utils::conv::get_host_tensor_descriptor(dims, InLayout{});
76
77
    }
    case 2: {
78
        return ck::utils::conv::get_host_tensor_descriptor(dims, InLayout{});
79
80
    }
    case 1: {
81
        return ck::utils::conv::get_host_tensor_descriptor(dims, InLayout{});
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
    }
    default: {
        throw std::runtime_error("Unsupported number of spatial dimensions provided!");
    }
    }
}
template <typename WeiLayout>
HostTensorDescriptor get_filters_host_tensor_descriptor(const std::vector<std::size_t>& dims,
                                                        int num_dim_spatial = 2)
{
    namespace tl = ck::tensor_layout::convolution;

    switch(num_dim_spatial)
    {
    case 3: {
97
        return ck::utils::conv::get_host_tensor_descriptor(dims, WeiLayout{});
98
99
    }
    case 2: {
100
        return ck::utils::conv::get_host_tensor_descriptor(dims, WeiLayout{});
101
102
    }
    case 1: {
103
        return ck::utils::conv::get_host_tensor_descriptor(dims, WeiLayout{});
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
    }
    default: {
        throw std::runtime_error("Unsupported number of spatial dimensions provided!");
    }
    }
}
template <typename OutLayout>
HostTensorDescriptor get_output_host_ensor_descriptor(const std::vector<std::size_t>& dims,
                                                      int num_dim_spatial = 2)
{
    namespace tl = ck::tensor_layout::convolution;

    switch(num_dim_spatial)
    {
    case 3: {
119
        return ck::utils::conv::get_host_tensor_descriptor(dims, OutLayout{});
120
121
    }
    case 2: {
122
        return ck::utils::conv::get_host_tensor_descriptor(dims, OutLayout{});
123
124
    }
    case 1: {
125
        return ck::utils::conv::get_host_tensor_descriptor(dims, OutLayout{});
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
    }
    default: {
        throw std::runtime_error("Unsupported number of spatial dimensions provided!");
    }
    }
}
template <typename InDataType, typename WeiDataType, typename OutDataType>
void get_device_conv_bwd_data_op_ptr(
    InDataType, WeiDataType, OutDataType, std::vector<DeviceConvBwdDataNoOpPtr>&, int)
{
    std::cout << "can not find device conv bwd data" << std::endl;
    exit(1);
}
template <>
void get_device_conv_bwd_data_op_ptr(
    F32, F32, F32, std::vector<DeviceConvBwdDataNoOpPtr>& conv_ptrs, int num_dim_spatial)
{
    switch(num_dim_spatial)
    {
    case 1:
146
        ck::tensor_operation::device::instance::
147
148
149
            add_device_conv1d_bwd_data_xdl_nwc_kxc_nwk_f32_instances(conv_ptrs);
        break;
    case 2:
150
        ck::tensor_operation::device::instance::
151
152
153
            add_device_conv2d_bwd_data_xdl_nhwc_kyxc_nhwk_f32_instances(conv_ptrs);
        break;
    case 3:
154
        ck::tensor_operation::device::instance::
155
156
157
158
159
160
161
162
163
164
165
166
            add_device_conv3d_bwd_data_xdl_ndhwc_kzyxc_ndhwk_f32_instances(conv_ptrs);
        break;
    default: break;
    }
}
template <>
void get_device_conv_bwd_data_op_ptr(
    F16, F16, F16, std::vector<DeviceConvBwdDataNoOpPtr>& conv_ptrs, int num_dim_spatial)
{
    switch(num_dim_spatial)
    {
    case 1:
167
        ck::tensor_operation::device::instance::
168
169
170
            add_device_conv1d_bwd_data_xdl_nwc_kxc_nwk_f16_instances(conv_ptrs);
        break;
    case 2:
171
        ck::tensor_operation::device::instance::
172
173
174
            add_device_conv2d_bwd_data_xdl_nhwc_kyxc_nhwk_f16_instances(conv_ptrs);
        break;
    case 3:
175
        ck::tensor_operation::device::instance::
176
177
178
179
180
181
182
183
184
185
186
187
            add_device_conv3d_bwd_data_xdl_ndhwc_kzyxc_ndhwk_f16_instances(conv_ptrs);
        break;
    default: break;
    }
}
template <>
void get_device_conv_bwd_data_op_ptr(
    BF16, BF16, BF16, std::vector<DeviceConvBwdDataNoOpPtr>& conv_ptrs, int num_dim_spatial)
{
    switch(num_dim_spatial)
    {
    case 1:
188
        ck::tensor_operation::device::instance::
189
190
191
            add_device_conv1d_bwd_data_xdl_nwc_kxc_nwk_bf16_instances(conv_ptrs);
        break;
    case 2:
192
        ck::tensor_operation::device::instance::
193
194
195
            add_device_conv2d_bwd_data_xdl_nhwc_kyxc_nhwk_bf16_instances(conv_ptrs);
        break;
    case 3:
196
        ck::tensor_operation::device::instance::
197
198
199
200
201
202
203
204
205
206
207
208
            add_device_conv3d_bwd_data_xdl_ndhwc_kzyxc_ndhwk_bf16_instances(conv_ptrs);
        break;
    default: break;
    }
}
template <>
void get_device_conv_bwd_data_op_ptr(
    INT8, INT8, INT8, std::vector<DeviceConvBwdDataNoOpPtr>& conv_ptrs, int num_dim_spatial)
{
    switch(num_dim_spatial)
    {
    case 1:
209
        ck::tensor_operation::device::instance::
210
211
212
            add_device_conv1d_bwd_data_xdl_nwc_kxc_nwk_int8_instances(conv_ptrs);
        break;
    case 2:
213
        ck::tensor_operation::device::instance::
214
215
216
            add_device_conv2d_bwd_data_xdl_nhwc_kyxc_nhwk_int8_instances(conv_ptrs);
        break;
    case 3:
217
        ck::tensor_operation::device::instance::
218
219
220
221
222
223
224
225
226
227
228
            add_device_conv3d_bwd_data_xdl_ndhwc_kzyxc_ndhwk_int8_instances(conv_ptrs);
        break;
    default: break;
    }
}

template <typename T>
static bool check_out(const Tensor<T>& ref, const Tensor<T>& result)
{
    float max_diff = 1e-6;

229
    for(std::size_t i = 0; i < ref.mData.size(); ++i)
230
231
232
233
234
235
236
237
238
239
240
241
242
    {
        float diff = std::abs(double(ref.mData[i]) - double(result.mData[i]));
        if(max_diff < diff)
        {
            return false;
        }
    }
    return true;
}
template <typename DataType>
void show_data_nhwc_layout(Tensor<DataType>& nhwc)
{
    std::cout << "[";
243
    for(int n = 0; n < ck::type_convert<int>(nhwc.mDesc.GetLengths()[0]); n++)
244
245
    {
        std::cout << "[";
246
        for(int hi = 0; hi < ck::type_convert<int>(nhwc.mDesc.GetLengths()[2]); hi++)
247
248
        {
            std::cout << "[";
249
            for(int wi = 0; wi < ck::type_convert<int>(nhwc.mDesc.GetLengths()[3]); wi++)
250
251
            {
                std::cout << "[";
252
                for(int c = 0; c < ck::type_convert<int>(nhwc.mDesc.GetLengths()[1]); c++)
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
                {
                    std::cout << static_cast<float>(nhwc(n, c, hi, wi)) << "  ";
                }
                std::cout << "]";
            }
            std::cout << "]";
        }
        std::cout << "]";
    }
    std::cout << "]";
}

template <int NDimSpatial,
          typename InDataType,
          typename WeiDataType,
          typename OutDataType,
          typename AccDataType,
          typename InLayout,
          typename WeiLayout,
          typename OutLayout>
bool profile_convnd_bwd_data_impl(int do_verification,
                                  int init_method,
                                  bool do_log,
JD's avatar
JD committed
276
                                  bool time_kernel,
277
278
279
                                  ck::index_t N,
                                  ck::index_t K,
                                  ck::index_t C,
ltqin's avatar
ltqin committed
280
281
282
283
284
285
286
                                  const std::vector<ck::index_t>& input_spatial_lengths,
                                  const std::vector<ck::index_t>& filter_spatial_lengths,
                                  const std::vector<ck::index_t>& output_spatial_lengths,
                                  const std::vector<ck::index_t>& conv_filter_strides,
                                  const std::vector<ck::index_t>& conv_filter_dilations,
                                  const std::vector<ck::index_t>& input_left_pads,
                                  const std::vector<ck::index_t>& input_right_pads)
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
{
    using InElementOp  = ck::tensor_operation::element_wise::PassThrough;
    using WeiElementOp = ck::tensor_operation::element_wise::PassThrough;
    using OutElementOp = ck::tensor_operation::element_wise::PassThrough;

    const auto in_element_op  = InElementOp{};
    const auto wei_element_op = WeiElementOp{};
    const auto out_element_op = OutElementOp{};

    std::vector<std::size_t> input_dims{static_cast<std::size_t>(N), static_cast<std::size_t>(C)};
    input_dims.insert(
        std::end(input_dims), std::begin(input_spatial_lengths), std::end(input_spatial_lengths));

    std::vector<std::size_t> filter_dims{static_cast<std::size_t>(K), static_cast<std::size_t>(C)};
    filter_dims.insert(std::end(filter_dims),
                       std::begin(filter_spatial_lengths),
                       std::end(filter_spatial_lengths));

    std::vector<std::size_t> output_dims{static_cast<std::size_t>(N), static_cast<std::size_t>(K)};
    output_dims.insert(std::end(output_dims),
                       std::begin(output_spatial_lengths),
                       std::end(output_spatial_lengths));

ltqin's avatar
ltqin committed
310
    Tensor<InDataType> input_host_result(
311
        get_input_host_tensor_descriptor<InLayout>(input_dims, NDimSpatial));
ltqin's avatar
ltqin committed
312
    Tensor<InDataType> input_device_result(
313
        get_input_host_tensor_descriptor<InLayout>(input_dims, NDimSpatial));
ltqin's avatar
ltqin committed
314
    Tensor<WeiDataType> weights(
315
        get_filters_host_tensor_descriptor<WeiLayout>(filter_dims, NDimSpatial));
ltqin's avatar
ltqin committed
316
    Tensor<OutDataType> output(
317
318
        get_output_host_ensor_descriptor<OutLayout>(output_dims, NDimSpatial));

ltqin's avatar
ltqin committed
319
320
321
    std::cout << "input: " << input_host_result.mDesc << std::endl;
    std::cout << "weights: " << weights.mDesc << std::endl;
    std::cout << "output: " << output.mDesc << std::endl;
322
323
324
325
326

    switch(init_method)
    {
    case 0: break;
    case 1:
ltqin's avatar
ltqin committed
327
328
        output.GenerateTensorValue(GeneratorTensor_2<OutDataType>{-5, 5});
        weights.GenerateTensorValue(GeneratorTensor_2<WeiDataType>{-5, 5});
329
330
        break;
    default:
ltqin's avatar
ltqin committed
331
332
        output.GenerateTensorValue(GeneratorTensor_1<OutDataType>{1});
        weights.GenerateTensorValue(GeneratorTensor_1<WeiDataType>{1});
333
334
    }

ltqin's avatar
ltqin committed
335
336
337
    DeviceMem in_device_buf(sizeof(InDataType) * input_device_result.mDesc.GetElementSpace());
    DeviceMem wei_device_buf(sizeof(WeiDataType) * weights.mDesc.GetElementSpace());
    DeviceMem out_device_buf(sizeof(OutDataType) * output.mDesc.GetElementSpace());
338

ltqin's avatar
ltqin committed
339
340
    out_device_buf.ToDevice(output.mData.data());
    wei_device_buf.ToDevice(weights.mData.data());
341
342

    // reset input to zero
ltqin's avatar
ltqin committed
343
    in_device_buf.SetZero();
344
345
346
347
348
349

    if(do_verification)
    {
        auto RunReference = [&](auto& ref_conv) {
            auto ref_invoker = ref_conv.MakeInvoker();

ltqin's avatar
ltqin committed
350
351
352
            auto ref_argument = ref_conv.MakeArgument(input_host_result,
                                                      weights,
                                                      output,
353
354
355
356
357
358
359
360
361
                                                      conv_filter_strides,
                                                      conv_filter_dilations,
                                                      input_left_pads,
                                                      input_right_pads,
                                                      InElementOp{},
                                                      WeiElementOp{},
                                                      OutElementOp{});
            ref_invoker.Run(ref_argument);
        };
ltqin's avatar
ltqin committed
362
363
364
365
366
367
368
369
370
371

        auto ref_conv = ck::tensor_operation::host::ReferenceConvBwdData<InDataType,
                                                                         WeiDataType,
                                                                         OutDataType,
                                                                         AccDataType,
                                                                         InElementOp,
                                                                         WeiElementOp,
                                                                         OutElementOp,
                                                                         NDimSpatial>();
        RunReference(ref_conv);
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
    }

    // add device Conv instances
    std::vector<DeviceConvBwdDataNoOpPtr> conv_ptrs;
    get_device_conv_bwd_data_op_ptr(
        InDataType{}, WeiDataType{}, OutDataType{}, conv_ptrs, NDimSpatial);

    if(conv_ptrs.size() <= 0)
    {
        throw std::runtime_error("wrong! no device Conv instance found");
    }

    std::string best_conv_name;
    float best_ave_time   = 0;
    float best_tflops     = 0;
    float best_gb_per_sec = 0;

    // profile device Conv instances
    bool success = true;
    for(auto& conv_ptr : conv_ptrs)
    {
        auto argument_ptr = conv_ptr->MakeArgumentPointer(
            static_cast<InDataType*>(in_device_buf.GetDeviceBuffer()),
            static_cast<WeiDataType*>(wei_device_buf.GetDeviceBuffer()),
            static_cast<OutDataType*>(out_device_buf.GetDeviceBuffer()),
            N,
            K,
            C,
            input_spatial_lengths,
            filter_spatial_lengths,
            output_spatial_lengths,
            conv_filter_strides,
            conv_filter_dilations,
            input_left_pads,
            input_right_pads,
            in_element_op,
            wei_element_op,
            out_element_op);

        auto invoker_ptr = conv_ptr->MakeInvokerPointer();

        if(conv_ptr->IsSupportedArgument(argument_ptr.get()))
        {
            std::string conv_name = conv_ptr->GetTypeString();

JD's avatar
JD committed
417
418
            float ave_time =
                invoker_ptr->Run(argument_ptr.get(), StreamConfig{nullptr, time_kernel});
419
420

            std::size_t flop =
421
422
423
424
                ck::utils::conv::get_flops(N, C, K, filter_spatial_lengths, output_spatial_lengths);
            std::size_t num_btype =
                ck::utils::conv::get_btype<InDataType, WeiDataType, OutDataType>(
                    N, C, K, input_spatial_lengths, filter_spatial_lengths, output_spatial_lengths);
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441

            float tflops     = static_cast<float>(flop) / 1.E9 / ave_time;
            float gb_per_sec = num_btype / 1.E6 / ave_time;

            std::cout << "Perf: " << ave_time << " ms, " << tflops << " TFlops, " << gb_per_sec
                      << " GB/s" << std::endl;

            if(tflops > best_tflops)
            {
                best_conv_name  = conv_name;
                best_tflops     = tflops;
                best_ave_time   = ave_time;
                best_gb_per_sec = gb_per_sec;
            }

            if(do_verification)
            {
ltqin's avatar
ltqin committed
442
                in_device_buf.FromDevice(input_device_result.mData.data());
443

ltqin's avatar
ltqin committed
444
                if(!check_out(input_host_result, input_device_result))
445
446
447
448
449
450
451
452
453
454
                {
                    std::cout << "Fail Info: " << conv_ptr->GetTypeString() << std::endl;

                    success = false;
                }
                else
                {
                    std::cout << "Pass Info: " << conv_ptr->GetTypeString() << std::endl;
                }

ltqin's avatar
ltqin committed
455
                check_error(input_host_result, input_device_result);
456
457
458
459

                if(do_log)
                {
                    std::cout << "in : ";
ltqin's avatar
ltqin committed
460
                    show_data_nhwc_layout(output);
461
462
463
                    std::cout << std::endl;

                    std::cout << "wei: ";
ltqin's avatar
ltqin committed
464
                    show_data_nhwc_layout(weights);
465
466
467
                    std::cout << std::endl;

                    std::cout << "out_host  : ";
ltqin's avatar
ltqin committed
468
                    show_data_nhwc_layout(input_host_result);
469
470
471
                    std::cout << std::endl;

                    std::cout << "out_device: ";
ltqin's avatar
ltqin committed
472
                    show_data_nhwc_layout(input_device_result);
473
474
475
476
477
478
479
480
481
482
483
484
485
                    std::cout << std::endl;
                }
            }
        }
    }

    std::cout << "Best Perf: " << best_ave_time << " ms, " << best_tflops << " TFlops, "
              << best_gb_per_sec << " GB/s, " << best_conv_name << std::endl;
    return success;
}

} // namespace profiler
} // namespace ck