"vscode:/vscode.git/clone" did not exist on "5adf7bc218de3152923440f74aad5901d1b80c9f"
reference_conv_fwd.cpp 24.2 KB
Newer Older
1
2
3
4
5
6
7
8
#include <algorithm>
#include <cmath>
#include <cstdlib>
#include <half.hpp>
#include <numeric>
#include <type_traits>
#include <vector>

9
#include "check_err.hpp"
10
#include "config.hpp"
11
#include "conv_fwd_util.hpp"
12
13
14
15
16
17
18
19
20
21
22
23
24
25
#include "element_wise_operation.hpp"
#include "host_tensor.hpp"
#include "reference_conv_fwd.hpp"
#include "tensor_layout.hpp"

namespace {
using InElementOp  = ck::tensor_operation::element_wise::PassThrough;
using WeiElementOp = ck::tensor_operation::element_wise::PassThrough;
using OutElementOp = ck::tensor_operation::element_wise::PassThrough;

template <typename T>
struct FillMonotonicSeq
{
    T m_init_value{0};
26
    T m_step{1};
27
28
29
30

    template <typename ForwardIter>
    void operator()(ForwardIter first, ForwardIter last) const
    {
31
32
33
34
35
        std::generate(first, last, [=, n = m_init_value]() mutable {
            auto tmp = n;
            n += m_step;
            return tmp;
        });
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
    }
};

template <typename T>
struct FillConstant
{
    T m_value{0};

    template <typename ForwardIter>
    void operator()(ForwardIter first, ForwardIter last) const
    {
        std::fill(first, last, m_value);
    }
};

template <ck::index_t NDim,
          typename InDataType    = float,
          typename WeiDataType   = float,
          typename OutDataType   = float,
          typename InLayout      = ck::tensor_layout::convolution::NHWC,
          typename WeiLayout     = ck::tensor_layout::convolution::KYXC,
          typename OutLayout     = ck::tensor_layout::convolution::NHWK,
          typename FillInputOp   = FillMonotonicSeq<InDataType>,
          typename FillWeightsOp = FillConstant<WeiDataType>>
60
61
62
63
Tensor<OutDataType>
run_reference_convolution_forward(const ck::utils::conv::ConvParams& params,
                                  const FillInputOp& fill_input_op     = FillInputOp{},
                                  const FillWeightsOp& fill_weights_op = FillWeightsOp{0.5f})
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
{
    std::vector<std::size_t> input_dims{static_cast<std::size_t>(params.N),
                                        static_cast<std::size_t>(params.C)};
    input_dims.insert(std::end(input_dims),
                      std::begin(params.input_spatial_lengths),
                      std::end(params.input_spatial_lengths));

    std::vector<std::size_t> filter_dims{static_cast<std::size_t>(params.K),
                                         static_cast<std::size_t>(params.C)};
    filter_dims.insert(std::end(filter_dims),
                       std::begin(params.filter_spatial_lengths),
                       std::end(params.filter_spatial_lengths));

    const std::vector<ck::index_t>& output_spatial_lengths = params.GetOutputSpatialLengths();
    std::vector<std::size_t> output_dims{static_cast<std::size_t>(params.N),
                                         static_cast<std::size_t>(params.K)};
    output_dims.insert(std::end(output_dims),
                       std::begin(output_spatial_lengths),
                       std::end(output_spatial_lengths));

84
85
86
    Tensor<InDataType> input(ck::utils::conv::get_host_tensor_descriptor(input_dims, InLayout{}));
    Tensor<WeiDataType> weights(
        ck::utils::conv::get_host_tensor_descriptor(filter_dims, WeiLayout{}));
87
    Tensor<OutDataType> host_output(
88
        ck::utils::conv::get_host_tensor_descriptor(output_dims, OutLayout{}));
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113

    fill_input_op(input.begin(), input.end());
    fill_weights_op(weights.begin(), weights.end());
    std::fill(host_output.begin(), host_output.end(), OutDataType(0.f));

    auto ref_conv     = ck::tensor_operation::host::ReferenceConvFwd<InDataType,
                                                                 WeiDataType,
                                                                 OutDataType,
                                                                 InElementOp,
                                                                 WeiElementOp,
                                                                 OutElementOp,
                                                                 NDim>();
    auto ref_invoker  = ref_conv.MakeInvoker();
    auto ref_argument = ref_conv.MakeArgument(input,
                                              weights,
                                              host_output,
                                              params.conv_filter_strides,
                                              params.conv_filter_dilations,
                                              params.input_left_pads,
                                              params.input_right_pads,
                                              InElementOp{},
                                              WeiElementOp{},
                                              OutElementOp{});

    ref_invoker.Run(ref_argument);
114
    // std::cout <<"output: " << host_output.mDesc << std::endl << host_output.mData << std::endl;
115
116
117
    return host_output;
}

118
bool test_conv2d_nhwc()
119
120
{
    bool res{true};
121
    ck::utils::conv::ConvParams params;
122
123
124
125
126
127
128
129
130
131
    params.N                      = 1;
    params.K                      = 1;
    params.C                      = 2;
    params.filter_spatial_lengths = std::vector<ck::index_t>{3, 3};
    params.input_spatial_lengths  = std::vector<ck::index_t>{6, 6};
    params.conv_filter_strides    = std::vector<ck::index_t>{1, 1};
    params.conv_filter_dilations  = std::vector<ck::index_t>{1, 1};
    params.input_left_pads        = std::vector<ck::index_t>{0, 0};
    params.input_right_pads       = std::vector<ck::index_t>{0, 0};

132
    auto out_tensor = run_reference_convolution_forward<2>(params);
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
    std::vector<std::size_t> ref_dims{1, 1, 4, 4};
    std::vector<float> ref_data{130.5,
                                148.5,
                                166.5,
                                184.5,
                                238.5,
                                256.5,
                                274.5,
                                292.5,
                                346.5,
                                364.5,
                                382.5,
                                400.5,
                                454.5,
                                472.5,
                                490.5,
                                508.5};
150
151
152
153
    res = res && ck::utils::check_err(out_tensor.mDesc.GetLengths(),
                                      ref_dims,
                                      "Error: wrong output tensor dimensions!");
    res = res && ck::utils::check_err(out_tensor.mData, ref_data, "Error: incorrect results!");
154
155
156
157
158
159
160
161
162
163
164

    params.N                      = 1;
    params.K                      = 2;
    params.C                      = 2;
    params.filter_spatial_lengths = std::vector<ck::index_t>{3, 3};
    params.input_spatial_lengths  = std::vector<ck::index_t>{12, 12};
    params.conv_filter_strides    = std::vector<ck::index_t>{2, 2};
    params.conv_filter_dilations  = std::vector<ck::index_t>{2, 2};
    params.input_left_pads        = std::vector<ck::index_t>{1, 1};
    params.input_right_pads       = std::vector<ck::index_t>{1, 1};

165
    out_tensor = run_reference_convolution_forward<2>(params);
166
167
168
169
170
171
172
    ref_dims   = std::vector<std::size_t>{1, 2, 5, 5};
    ref_data   = std::vector<float>{
        210.,  210.,  327.,   327.,   351.,   351.,   375.,   375.,   399.,   399.,
        459.,  459.,  706.5,  706.5,  742.5,  742.5,  778.5,  778.5,  814.5,  814.5,
        747.,  747.,  1138.5, 1138.5, 1174.5, 1174.5, 1210.5, 1210.5, 1246.5, 1246.5,
        1035., 1035., 1570.5, 1570.5, 1606.5, 1606.5, 1642.5, 1642.5, 1678.5, 1678.5,
        1323., 1323., 2002.5, 2002.5, 2038.5, 2038.5, 2074.5, 2074.5, 2110.5, 2110.5};
173
174
175
176
    res = res && ck::utils::check_err(out_tensor.mDesc.GetLengths(),
                                      ref_dims,
                                      "Error: wrong output tensor dimensions!");
    res = res && ck::utils::check_err(out_tensor.mData, ref_data, "Error: incorrect results!");
177
178
179
180

    return res;
}

181
bool test_conv1d_nwc()
182
183
{
    bool res{true};
184
    ck::utils::conv::ConvParams params;
185
186
187
188
189
190
191
192
193
194
195
    params.num_dim_spatial        = 1;
    params.N                      = 1;
    params.K                      = 1;
    params.C                      = 2;
    params.filter_spatial_lengths = std::vector<ck::index_t>{3};
    params.input_spatial_lengths  = std::vector<ck::index_t>{6};
    params.conv_filter_strides    = std::vector<ck::index_t>{1};
    params.conv_filter_dilations  = std::vector<ck::index_t>{1};
    params.input_left_pads        = std::vector<ck::index_t>{0};
    params.input_right_pads       = std::vector<ck::index_t>{0};

196
197
198
199
200
201
202
203
    auto out_tensor =
        run_reference_convolution_forward<1,
                                          float,
                                          float,
                                          float,
                                          ck::tensor_layout::convolution::NWC,
                                          ck::tensor_layout::convolution::KXC,
                                          ck::tensor_layout::convolution::NWK>(params);
204
205
    std::vector<std::size_t> ref_dims{1, 1, 4};
    std::vector<float> ref_data{7.5, 13.5, 19.5, 25.5};
206
207
208
209
    res = res && ck::utils::check_err(out_tensor.mDesc.GetLengths(),
                                      ref_dims,
                                      "Error: wrong output tensor dimensions!");
    res = res && ck::utils::check_err(out_tensor.mData, ref_data, "Error: incorrect results!");
210
211
212
213
214
215
216
217
218
219
220
221

    params.num_dim_spatial        = 1;
    params.N                      = 1;
    params.K                      = 2;
    params.C                      = 2;
    params.filter_spatial_lengths = std::vector<ck::index_t>{3};
    params.input_spatial_lengths  = std::vector<ck::index_t>{12};
    params.conv_filter_strides    = std::vector<ck::index_t>{2};
    params.conv_filter_dilations  = std::vector<ck::index_t>{2};
    params.input_left_pads        = std::vector<ck::index_t>{1};
    params.input_right_pads       = std::vector<ck::index_t>{1};

222
223
224
225
226
227
228
    out_tensor = run_reference_convolution_forward<1,
                                                   float,
                                                   float,
                                                   float,
                                                   ck::tensor_layout::convolution::NWC,
                                                   ck::tensor_layout::convolution::KXC,
                                                   ck::tensor_layout::convolution::NWK>(params);
229
230
    ref_dims   = std::vector<std::size_t>{1, 2, 5};
    ref_data   = std::vector<float>{9., 9., 19.5, 19.5, 31.5, 31.5, 43.5, 43.5, 55.5, 55.5};
231
232
233
234
    res        = res && ck::utils::check_err(out_tensor.mDesc.GetLengths(),
                                      ref_dims,
                                      "Error: wrong output tensor dimensions!");
    res = res && ck::utils::check_err(out_tensor.mData, ref_data, "Error: incorrect results!");
235
236
237
238
239
240
241
242
243
244
245
246

    params.num_dim_spatial        = 1;
    params.N                      = 2;
    params.K                      = 16;
    params.C                      = 4;
    params.filter_spatial_lengths = std::vector<ck::index_t>{3};
    params.input_spatial_lengths  = std::vector<ck::index_t>{16};
    params.conv_filter_strides    = std::vector<ck::index_t>{1};
    params.conv_filter_dilations  = std::vector<ck::index_t>{1};
    params.input_left_pads        = std::vector<ck::index_t>{1};
    params.input_right_pads       = std::vector<ck::index_t>{1};

247
248
249
250
251
252
253
    auto out_tensor2 = run_reference_convolution_forward<1,
                                                         float,
                                                         float,
                                                         float,
                                                         ck::tensor_layout::convolution::NWC,
                                                         ck::tensor_layout::convolution::KXC,
                                                         ck::tensor_layout::convolution::NWK>(
254
        params, FillMonotonicSeq<float>{0.f, 0.1f});
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321

    ref_dims = std::vector<std::size_t>{2, 16, 16};
    ref_data = std::vector<float>{
        1.4,       1.4,       1.4,       1.4,       1.4,       1.4,       1.4,       1.4,
        1.4,       1.4,       1.4,       1.4,       1.4,       1.4,       1.4,       1.4,
        3.3,       3.3,       3.3,       3.3,       3.3,       3.3,       3.3,       3.3,
        3.3,       3.3,       3.3,       3.3,       3.3,       3.3,       3.3,       3.3,
        5.7,       5.7,       5.7,       5.7,       5.7,       5.7,       5.7,       5.7,
        5.7,       5.7,       5.7,       5.7,       5.7,       5.7,       5.7,       5.7,
        8.1,       8.1,       8.1,       8.1,       8.1,       8.1,       8.1,       8.1,
        8.1,       8.1,       8.1,       8.1,       8.1,       8.1,       8.1,       8.1,
        10.5,      10.5,      10.5,      10.5,      10.5,      10.5,      10.5,      10.5,
        10.5,      10.5,      10.5,      10.5,      10.5,      10.5,      10.5,      10.5,
        12.900001, 12.900001, 12.900001, 12.900001, 12.900001, 12.900001, 12.900001, 12.900001,
        12.900001, 12.900001, 12.900001, 12.900001, 12.900001, 12.900001, 12.900001, 12.900001,
        15.3,      15.3,      15.3,      15.3,      15.3,      15.3,      15.3,      15.3,
        15.3,      15.3,      15.3,      15.3,      15.3,      15.3,      15.3,      15.3,
        17.7,      17.7,      17.7,      17.7,      17.7,      17.7,      17.7,      17.7,
        17.7,      17.7,      17.7,      17.7,      17.7,      17.7,      17.7,      17.7,
        20.1,      20.1,      20.1,      20.1,      20.1,      20.1,      20.1,      20.1,
        20.1,      20.1,      20.1,      20.1,      20.1,      20.1,      20.1,      20.1,
        22.5,      22.5,      22.5,      22.5,      22.5,      22.5,      22.5,      22.5,
        22.5,      22.5,      22.5,      22.5,      22.5,      22.5,      22.5,      22.5,
        24.900002, 24.900002, 24.900002, 24.900002, 24.900002, 24.900002, 24.900002, 24.900002,
        24.900002, 24.900002, 24.900002, 24.900002, 24.900002, 24.900002, 24.900002, 24.900002,
        27.300001, 27.300001, 27.300001, 27.300001, 27.300001, 27.300001, 27.300001, 27.300001,
        27.300001, 27.300001, 27.300001, 27.300001, 27.300001, 27.300001, 27.300001, 27.300001,
        29.7,      29.7,      29.7,      29.7,      29.7,      29.7,      29.7,      29.7,
        29.7,      29.7,      29.7,      29.7,      29.7,      29.7,      29.7,      29.7,
        32.100002, 32.100002, 32.100002, 32.100002, 32.100002, 32.100002, 32.100002, 32.100002,
        32.100002, 32.100002, 32.100002, 32.100002, 32.100002, 32.100002, 32.100002, 32.100002,
        34.5,      34.5,      34.5,      34.5,      34.5,      34.5,      34.5,      34.5,
        34.5,      34.5,      34.5,      34.5,      34.5,      34.5,      34.5,      34.5,
        23.8,      23.8,      23.8,      23.8,      23.8,      23.8,      23.8,      23.8,
        23.8,      23.8,      23.8,      23.8,      23.8,      23.8,      23.8,      23.8,
        27.,       27.,       27.,       27.,       27.,       27.,       27.,       27.,
        27.,       27.,       27.,       27.,       27.,       27.,       27.,       27.,
        41.7,      41.7,      41.7,      41.7,      41.7,      41.7,      41.7,      41.7,
        41.7,      41.7,      41.7,      41.7,      41.7,      41.7,      41.7,      41.7,
        44.100002, 44.100002, 44.100002, 44.100002, 44.100002, 44.100002, 44.100002, 44.100002,
        44.100002, 44.100002, 44.100002, 44.100002, 44.100002, 44.100002, 44.100002, 44.100002,
        46.5,      46.5,      46.5,      46.5,      46.5,      46.5,      46.5,      46.5,
        46.5,      46.5,      46.5,      46.5,      46.5,      46.5,      46.5,      46.5,
        48.899998, 48.899998, 48.899998, 48.899998, 48.899998, 48.899998, 48.899998, 48.899998,
        48.899998, 48.899998, 48.899998, 48.899998, 48.899998, 48.899998, 48.899998, 48.899998,
        51.3,      51.3,      51.3,      51.3,      51.3,      51.3,      51.3,      51.3,
        51.3,      51.3,      51.3,      51.3,      51.3,      51.3,      51.3,      51.3,
        53.7,      53.7,      53.7,      53.7,      53.7,      53.7,      53.7,      53.7,
        53.7,      53.7,      53.7,      53.7,      53.7,      53.7,      53.7,      53.7,
        56.100002, 56.100002, 56.100002, 56.100002, 56.100002, 56.100002, 56.100002, 56.100002,
        56.100002, 56.100002, 56.100002, 56.100002, 56.100002, 56.100002, 56.100002, 56.100002,
        58.5,      58.5,      58.5,      58.5,      58.5,      58.5,      58.5,      58.5,
        58.5,      58.5,      58.5,      58.5,      58.5,      58.5,      58.5,      58.5,
        60.899998, 60.899998, 60.899998, 60.899998, 60.899998, 60.899998, 60.899998, 60.899998,
        60.899998, 60.899998, 60.899998, 60.899998, 60.899998, 60.899998, 60.899998, 60.899998,
        63.3,      63.3,      63.3,      63.3,      63.3,      63.3,      63.3,      63.3,
        63.3,      63.3,      63.3,      63.3,      63.3,      63.3,      63.3,      63.3,
        65.7,      65.7,      65.7,      65.7,      65.7,      65.7,      65.7,      65.7,
        65.7,      65.7,      65.7,      65.7,      65.7,      65.7,      65.7,      65.7,
        68.1,      68.1,      68.1,      68.1,      68.1,      68.1,      68.1,      68.1,
        68.1,      68.1,      68.1,      68.1,      68.1,      68.1,      68.1,      68.1,
        70.5,      70.5,      70.5,      70.5,      70.5,      70.5,      70.5,      70.5,
        70.5,      70.5,      70.5,      70.5,      70.5,      70.5,      70.5,      70.5,
        72.9,      72.9,      72.9,      72.9,      72.9,      72.9,      72.9,      72.9,
        72.9,      72.9,      72.9,      72.9,      72.9,      72.9,      72.9,      72.9,
        49.4,      49.4,      49.4,      49.4,      49.4,      49.4,      49.4,      49.4,
        49.4,      49.4,      49.4,      49.4,      49.4,      49.4,      49.4,      49.4};
322
323
324
325
    res = res && ck::utils::check_err(out_tensor2.mDesc.GetLengths(),
                                      ref_dims,
                                      "Error: wrong output tensor dimensions!");
    res = res && ck::utils::check_err(out_tensor2.mData, ref_data, "Error: incorrect results!");
326
327
328
329

    return res;
}

330
bool test_conv3d_ncdhw()
331
332
{
    bool res{true};
333
    ck::utils::conv::ConvParams params;
334
335
336
337
338
339
340
341
342
343
344
    params.num_dim_spatial        = 3;
    params.N                      = 1;
    params.K                      = 1;
    params.C                      = 2;
    params.filter_spatial_lengths = std::vector<ck::index_t>{3, 3, 3};
    params.input_spatial_lengths  = std::vector<ck::index_t>{6, 6, 6};
    params.conv_filter_strides    = std::vector<ck::index_t>{1, 1, 1};
    params.conv_filter_dilations  = std::vector<ck::index_t>{1, 1, 1};
    params.input_left_pads        = std::vector<ck::index_t>{0, 0, 0};
    params.input_right_pads       = std::vector<ck::index_t>{0, 0, 0};

345
346
347
348
349
350
351
    auto out_tensor = run_reference_convolution_forward<3,
                                                        float,
                                                        float,
                                                        float,
                                                        ck::tensor_layout::convolution::NCDHW,
                                                        ck::tensor_layout::convolution::KCZYX,
                                                        ck::tensor_layout::convolution::NKDHW>(
352
353
354
355
356
357
358
359
360
361
362
        params, FillMonotonicSeq<float>{0.f, 0.1f});
    std::vector<std::size_t> ref_dims{1, 1, 4, 4, 4};
    std::vector<float> ref_data{
        407.7,     410.40002, 413.09998, 415.80002, 423.90002, 426.6,     429.30002, 432.,
        440.1,     442.80002, 445.5,     448.2,     456.30002, 459.,      461.7,     464.40002,
        504.90002, 507.6,     510.30002, 513.,      521.1,     523.8,     526.5,     529.2001,
        537.3,     540.,      542.7001,  545.4,     553.5,     556.2001,  558.9,     561.6,
        602.10004, 604.8,     607.5,     610.2,     618.3,     621.,      623.7,     626.4,
        634.5,     637.2,     639.9,     642.60004, 650.7,     653.4,     656.10004, 658.8,
        699.3,     702.,      704.7,     707.4,     715.5,     718.2,     720.9,     723.60004,
        731.7,     734.4001,  737.10004, 739.8,     747.9001,  750.60004, 753.3,     756.};
363
364
365
366
367
    res = res && ck::utils::check_err(out_tensor.mDesc.GetLengths(),
                                      ref_dims,
                                      "Error [case 1]: wrong output tensor dimensions!");
    res = res &&
          ck::utils::check_err(out_tensor.mData, ref_data, "Error [case 1]: incorrect results!");
368
369
370
371
372
373
374
375
376
377
378

    params.N                      = 1;
    params.K                      = 2;
    params.C                      = 2;
    params.filter_spatial_lengths = std::vector<ck::index_t>{3, 3, 3};
    params.input_spatial_lengths  = std::vector<ck::index_t>{12, 12, 12};
    params.conv_filter_strides    = std::vector<ck::index_t>{3, 3, 3};
    params.conv_filter_dilations  = std::vector<ck::index_t>{1, 1, 1};
    params.input_left_pads        = std::vector<ck::index_t>{0, 0, 0};
    params.input_right_pads       = std::vector<ck::index_t>{0, 0, 0};

379
380
381
382
383
384
385
    out_tensor = run_reference_convolution_forward<3,
                                                   float,
                                                   float,
                                                   float,
                                                   ck::tensor_layout::convolution::NCDHW,
                                                   ck::tensor_layout::convolution::KCZYX,
                                                   ck::tensor_layout::convolution::NKDHW>(
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
        params, FillMonotonicSeq<float>{0.f, 0.1f});
    ref_dims = std::vector<std::size_t>{1, 2, 4, 4, 4};
    ref_data = std::vector<float>{
        2756.7002, 2764.7998, 2772.9001, 2781.,     2853.9001, 2862.,     2870.1,    2878.2002,
        2951.1,    2959.2002, 2967.2998, 2975.4001, 3048.2998, 3056.4001, 3064.5,    3072.6,
        3923.1,    3931.2,    3939.2998, 3947.4,    4020.2998, 4028.4001, 4036.5002, 4044.5999,
        4117.5,    4125.6,    4133.7,    4141.8,    4214.7,    4222.8,    4230.9004, 4239.,
        5089.5,    5097.5996, 5105.7,    5113.8,    5186.7,    5194.8,    5202.9,    5211.,
        5283.9004, 5292.,     5300.0996, 5308.2,    5381.0996, 5389.2,    5397.3,    5405.4004,
        6255.9004, 6264.0005, 6272.1,    6280.2,    6353.1,    6361.2,    6369.301,  6377.4,
        6450.301,  6458.4,    6466.5,    6474.6,    6547.5,    6555.6,    6563.699,  6571.801,
        2756.7002, 2764.7998, 2772.9001, 2781.,     2853.9001, 2862.,     2870.1,    2878.2002,
        2951.1,    2959.2002, 2967.2998, 2975.4001, 3048.2998, 3056.4001, 3064.5,    3072.6,
        3923.1,    3931.2,    3939.2998, 3947.4,    4020.2998, 4028.4001, 4036.5002, 4044.5999,
        4117.5,    4125.6,    4133.7,    4141.8,    4214.7,    4222.8,    4230.9004, 4239.,
        5089.5,    5097.5996, 5105.7,    5113.8,    5186.7,    5194.8,    5202.9,    5211.,
        5283.9004, 5292.,     5300.0996, 5308.2,    5381.0996, 5389.2,    5397.3,    5405.4004,
        6255.9004, 6264.0005, 6272.1,    6280.2,    6353.1,    6361.2,    6369.301,  6377.4,
        6450.301,  6458.4,    6466.5,    6474.6,    6547.5,    6555.6,    6563.699,  6571.801};
405
406
407
    res = res && ck::utils::check_err(out_tensor.mDesc.GetLengths(),
                                      ref_dims,
                                      "Error [case 2]: wrong output tensor dimensions!");
408
    res =
409
        res && ck::utils::check_err(
410
                   out_tensor.mData, ref_data, "Error [case 2]: incorrect results!", 1e-4f, 1e-6f);
411
412
413
414
415
416
417
418
419

    return res;
}

} // anonymous namespace

int main(void)
{
    bool res{true};
420
421
422
    res = test_conv2d_nhwc();
    std::cout << "test_conv2d_nhwc ..... " << (res ? "SUCCESS" : "FAILURE") << std::endl;
    res = test_conv1d_nwc();
423
    std::cout << "TestConv1DNHWC ..... " << (res ? "SUCCESS" : "FAILURE") << std::endl;
424
425
    res = test_conv3d_ncdhw();
    std::cout << "test_conv3d_ncdhw ..... " << (res ? "SUCCESS" : "FAILURE") << std::endl;
426
    return res ? 0 : 1;
427
}