gemm_xdl_fp16_splitk.cpp 33.8 KB
Newer Older
wangshaojie6's avatar
wangshaojie6 committed
1
2
3
4
5
6
7
8
9
10
11
12
13
#include <iostream>
#include <numeric>
#include <initializer_list>
#include <cstdlib>
#include <stdlib.h>
#include <half.hpp>
#include "check_err.hpp"
#include "config.hpp"
#include "device.hpp"
#include "host_tensor.hpp"
#include "host_tensor_generator.hpp"
#include "device_tensor.hpp"
#include "device_gemm_xdl.hpp"
Wenkai's avatar
Wenkai committed
14
#include "device_gemm_xdl_splitk_c_shuffle_small_gemm.hpp"
Wenkai's avatar
Wenkai committed
15
#include "device_gemm_xdl_splitk_c_shuffle_static.hpp"
wangshaojie6's avatar
wangshaojie6 committed
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
#include "device_gemm_xdl_cshuffle.hpp"
#include "element_wise_operation.hpp"
#include "reference_gemm.hpp"
#include "gemm_specialization.hpp"

template <ck::index_t... Is>
using S = ck::Sequence<Is...>;

using F16 = ck::half_t;
using F32 = float;

using Row = ck::tensor_layout::gemm::RowMajor;
using Col = ck::tensor_layout::gemm::ColumnMajor;

using PassThrough = ck::tensor_operation::element_wise::PassThrough;

using ADataType   = ck::half_t;
using BDataType   = ck::half_t;
using CDataType   = ck::half_t;
using AccDataType = float;

using ALayout = ck::tensor_layout::gemm::RowMajor;
wangshaojie6's avatar
wangshaojie6 committed
38
using BLayout = ck::tensor_layout::gemm::RowMajor;
39
//using BLayout = Col;
wangshaojie6's avatar
wangshaojie6 committed
40
41
42
43
44
45
46
47
using CLayout = ck::tensor_layout::gemm::RowMajor;

using AElementOp = ck::tensor_operation::element_wise::PassThrough;
using BElementOp = ck::tensor_operation::element_wise::PassThrough;
using CElementOp = ck::tensor_operation::element_wise::PassThrough;

static constexpr auto GemmDefault = ck::tensor_operation::device::GemmSpecialization::Default;

Wenkai's avatar
Wenkai committed
48
49

#if USEING_STATIC_KERNEL
Wenkai's avatar
Wenkai committed
50
#if MNKB_1_4
Wenkai's avatar
Wenkai committed
51
52
53
54
55
using DeviceGemmInstance = ck::tensor_operation::device::DeviceGemmXdlSplitKCShuffleStatic
//######| ALayout| BLayout| CLayout| AData| BData| CData| AccData| CShuffle|           A|           B|           C|           GEMM| NumGemmK| Block|  MPer|  NPer|  KPer| AK1| BK1| MPer| NPer| MXdl| NXdl|  ABlockTransfer| ABlockTransfer| ABlockTransfer| ABlockTransfer| ABlockTransfer| ABlockTransfer| ABlockLds|  BBlockTransfer| BBlockTransfer| BBlockTransfer| BlockTransfer| BBlockTransfer| BBlockTransfer| BBlockLds|    CShuffle|    CShuffle| CBlockTransferClusterLengths|  CBlockTransfer|
//######|        |        |        |  Type|  Type|  Type|    Type| DataType| Elementwise| Elementwise| Elementwise| Spacialization| Prefetch|  Size| Block| Block| Block|    |    |  XDL|  XDL|  Per|  Per|   ThreadCluster|  ThreadCluster| SrcAccessOrder|   SrcVectorDim|      SrcScalar|      DstScalar| AddExtraM|   ThreadCluster|  ThreadCluster| SrcAccessOrder|  SrcVectorDim|      SrcScalar|      DstScalar| AddExtraN| MXdlPerWave| NXdlPerWave|         _MBlock_MWaveMPerXdl| ScalarPerVector|
//######|        |        |        |      |      |      |        |         |   Operation|   Operation|   Operation|               |    Stage|      |      |      |      |    |    |     |     | Wave| Wave| Lengths_K0_M_K1|   ArrangeOrder|               |               |      PerVector|   PerVector_K1|          | Lengths_K0_N_K1|   ArrangeOrder|               |              |      PerVector|   PerVector_K1|          |  PerShuffle|  PerShuffle|         _NBlock_NWaveNPerXdl|   _NWaveNPerXdl|
//######|        |        |        |      |      |      |        |         |            |            |            |               |         |      |      |      |      |    |    |     |     |     |     |                |               |               |               |               |               |          |                |               |               |              |               |               |          |            |            |                             |                |
Wenkai's avatar
Wenkai committed
56
57
58
            <Row,      Row,     Row,   F16,   F16,   F16,     F32,      F16,  AElementOp,  BElementOp,  CElementOp,    GemmDefault,        1,   256,    16,   128,    32,   8,   2,   16,   16,    1,    2,  S<1, 4, 16, 4>,  S<0, 2, 1, 3>,  S<0, 2, 1, 3>,              3,              2,              2,         1,  S<1, 8, 32, 1>,  S<0, 1, 3, 2>,  S<0, 1, 3, 2>,             2,              4,              2,         8,           1,           2,              S<1, 4, 1, 64>,               2>;

#else
59
60
61
62
63
64
using DeviceGemmInstance_0 = ck::tensor_operation::device::DeviceGemmXdlSplitKCShuffleStatic
//######|     M,    N,    K, K_batch| ALayout| BLayout| CLayout| AData| BData| CData| AccData| CShuffle|           A|           B|           C|           GEMM| NumGemmK| Block|  MPer|  NPer|  KPer| AK1| BK1| MPer| NPer| MXdl| NXdl|  ABlockTransfer| ABlockTransfer| ABlockTransfer| ABlockTransfer| ABlockTransfer| ABlockTransfer| ABlockLds|  BBlockTransfer| BBlockTransfer| BBlockTransfer| BlockTransfer| BBlockTransfer| BBlockTransfer| BBlockLds|    CShuffle|    CShuffle| CBlockTransferClusterLengths|  CBlockTransfer|
//######|     M,    N,    K, K_batch|        |        |        |  Type|  Type|  Type|    Type| DataType| Elementwise| Elementwise| Elementwise| Spacialization| Prefetch|  Size| Block| Block| Block|    |    |  XDL|  XDL|  Per|  Per|   ThreadCluster|  ThreadCluster| SrcAccessOrder|   SrcVectorDim|      SrcScalar|      DstScalar| AddExtraM|   ThreadCluster|  ThreadCluster| SrcAccessOrder|  SrcVectorDim|      SrcScalar|      DstScalar| AddExtraN| MXdlPerWave| NXdlPerWave|         _MBlock_MWaveMPerXdl| ScalarPerVector|
//######|     M,    N,    K, K_batch|        |        |        |      |      |      |        |         |   Operation|   Operation|   Operation|               |    Stage|      |      |      |      |    |    |     |     | Wave| Wave| Lengths_K0_M_K1|   ArrangeOrder|               |               |      PerVector|   PerVector_K1|          | Lengths_K0_N_K1|   ArrangeOrder|               |              |      PerVector|   PerVector_K1|          |  PerShuffle|  PerShuffle|         _NBlock_NWaveNPerXdl|   _NWaveNPerXdl|
//######|     M,    N,    K, K_batch|        |        |        |      |      |      |        |         |            |            |            |               |         |      |      |      |      |    |    |     |     |     |     |                |               |               |               |               |               |          |                |               |               |              |               |               |          |            |            |                             |                |
            <16, 1152, 5120,       8, Row,      Row,     Row,   F16,   F16,   F16,     F32,      F16,  AElementOp,  BElementOp,  CElementOp,    GemmDefault,        3,   256,    16,   128,    32,   8,   2,   16,   16,    1,    2,  S<1, 4, 16, 4>,  S<0, 2, 1, 3>,  S<0, 2, 1, 3>,              3,              2,              2,         1,  S<1, 8, 32, 1>,  S<0, 1, 3, 2>,  S<0, 1, 3, 2>,             2,              4,              2,         8,           1,           2,              S<1, 4, 1, 64>,               2>;
Wenkai's avatar
Wenkai committed
65
            //<Row,      Row,     Row,   F16,   F16,   F16,     F32,      F16,  AElementOp,  BElementOp,  CElementOp,    GemmDefault,        2,   256,    16,   256,    32,   8,   2,   16,   16,    1,    4,  S<1, 4, 16, 4>,  S<0, 2, 1, 3>,  S<0, 2, 1, 3>,              3,              2,              2,         1,  S<1, 4, 64, 1>,  S<0, 1, 3, 2>,  S<0, 1, 3, 2>,             2,              4,              2,         8,           1,           2,              S<1, 4, 1, 64>,               2>;
Wenkai's avatar
Wenkai committed
66
67
            //<Row,      Col,     Row,   F16,   F16,   F16,     F32,      F16,  AElementOp,  BElementOp,  CElementOp,    GemmDefault,        1,   256,    16,   128,    128,   8,   8,   16,   16,    1,    2,  S<1, 16, 16, 1>,  S<0, 2, 1, 3>,  S<0, 2, 1, 3>,              3,              8,              8,         1,  S<1, 16, 16, 1>,  S<0, 2, 1, 3>,  S<0, 2, 1, 3>,             3,              8,              8,         1,           1,           2,              S<1, 4, 1, 64>,               2>;
            //<Row,      Row,     Row,   F16,   F16,   F16,     F32,      F16,  AElementOp,  BElementOp,  CElementOp,    GemmDefault,        4,   256,    16,   128,    32,   8,   2,   16,   16,    1,    2,  S<1, 4, 16, 4>,  S<0, 2, 1, 3>,  S<0, 2, 1, 3>,              3,              2,              2,         1,  S<1, 8, 32, 1>,  S<0, 1, 3, 2>,  S<0, 1, 3, 2>,             2,              4,              2,         8,           1,           2,              S<1, 4, 1, 64>,               2>;
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
using DeviceGemmInstance_1 = ck::tensor_operation::device::DeviceGemmXdlSplitKCShuffleStatic
//######|     M,    N,    K, K_batch| ALayout| BLayout| CLayout| AData| BData| CData| AccData| CShuffle|           A|           B|           C|           GEMM| NumGemmK| Block|  MPer|  NPer|  KPer| AK1| BK1| MPer| NPer| MXdl| NXdl|  ABlockTransfer| ABlockTransfer| ABlockTransfer| ABlockTransfer| ABlockTransfer| ABlockTransfer| ABlockLds|  BBlockTransfer| BBlockTransfer| BBlockTransfer| BlockTransfer| BBlockTransfer| BBlockTransfer| BBlockLds|    CShuffle|    CShuffle| CBlockTransferClusterLengths|  CBlockTransfer|
//######|     M,    N,    K, K_batch|        |        |        |  Type|  Type|  Type|    Type| DataType| Elementwise| Elementwise| Elementwise| Spacialization| Prefetch|  Size| Block| Block| Block|    |    |  XDL|  XDL|  Per|  Per|   ThreadCluster|  ThreadCluster| SrcAccessOrder|   SrcVectorDim|      SrcScalar|      DstScalar| AddExtraM|   ThreadCluster|  ThreadCluster| SrcAccessOrder|  SrcVectorDim|      SrcScalar|      DstScalar| AddExtraN| MXdlPerWave| NXdlPerWave|         _MBlock_MWaveMPerXdl| ScalarPerVector|
//######|     M,    N,    K, K_batch|        |        |        |      |      |      |        |         |   Operation|   Operation|   Operation|               |    Stage|      |      |      |      |    |    |     |     | Wave| Wave| Lengths_K0_M_K1|   ArrangeOrder|               |               |      PerVector|   PerVector_K1|          | Lengths_K0_N_K1|   ArrangeOrder|               |              |      PerVector|   PerVector_K1|          |  PerShuffle|  PerShuffle|         _NBlock_NWaveNPerXdl|   _NWaveNPerXdl|
//######|     M,    N,    K, K_batch|        |        |        |      |      |      |        |         |            |            |            |               |         |      |      |      |      |    |    |     |     |     |     |                |               |               |               |               |               |          |                |               |               |              |               |               |          |            |            |                             |                |
            <16, 5120,  384,       4, Row,      Row,     Row,   F16,   F16,   F16,     F32,      F16,  AElementOp,  BElementOp,  CElementOp,    GemmDefault,        1,   256,    16,   128,    32,   8,   2,   16,   16,    1,    2,  S<1, 4, 16, 4>,  S<0, 2, 1, 3>,  S<0, 2, 1, 3>,              3,              2,              2,         1,  S<1, 8, 32, 1>,  S<0, 1, 3, 2>,  S<0, 1, 3, 2>,             2,              4,              2,         8,           1,           2,              S<1, 4, 1, 64>,               2>;

using DeviceGemmInstance_2 = ck::tensor_operation::device::DeviceGemmXdlSplitKCShuffleStatic
//######|     M,    N,    K, K_batch| ALayout| BLayout| CLayout| AData| BData| CData| AccData| CShuffle|           A|           B|           C|           GEMM| NumGemmK| Block|  MPer|  NPer|  KPer| AK1| BK1| MPer| NPer| MXdl| NXdl|  ABlockTransfer| ABlockTransfer| ABlockTransfer| ABlockTransfer| ABlockTransfer| ABlockTransfer| ABlockLds|  BBlockTransfer| BBlockTransfer| BBlockTransfer| BlockTransfer| BBlockTransfer| BBlockTransfer| BBlockLds|    CShuffle|    CShuffle| CBlockTransferClusterLengths|  CBlockTransfer|
//######|     M,    N,    K, K_batch|        |        |        |  Type|  Type|  Type|    Type| DataType| Elementwise| Elementwise| Elementwise| Spacialization| Prefetch|  Size| Block| Block| Block|    |    |  XDL|  XDL|  Per|  Per|   ThreadCluster|  ThreadCluster| SrcAccessOrder|   SrcVectorDim|      SrcScalar|      DstScalar| AddExtraM|   ThreadCluster|  ThreadCluster| SrcAccessOrder|  SrcVectorDim|      SrcScalar|      DstScalar| AddExtraN| MXdlPerWave| NXdlPerWave|         _MBlock_MWaveMPerXdl| ScalarPerVector|
//######|     M,    N,    K, K_batch|        |        |        |      |      |      |        |         |   Operation|   Operation|   Operation|               |    Stage|      |      |      |      |    |    |     |     | Wave| Wave| Lengths_K0_M_K1|   ArrangeOrder|               |               |      PerVector|   PerVector_K1|          | Lengths_K0_N_K1|   ArrangeOrder|               |              |      PerVector|   PerVector_K1|          |  PerShuffle|  PerShuffle|         _NBlock_NWaveNPerXdl|   _NWaveNPerXdl|
//######|     M,    N,    K, K_batch|        |        |        |      |      |      |        |         |            |            |            |               |         |      |      |      |      |    |    |     |     |     |     |                |               |               |               |               |               |          |                |               |               |              |               |               |          |            |            |                             |                |
            <16, 1280, 5120,       8, Row,      Row,     Row,   F16,   F16,   F16,     F32,      F16,  AElementOp,  BElementOp,  CElementOp,    GemmDefault,        3,   256,    16,   128,    32,   8,   2,   16,   16,    1,    2,  S<1, 4, 16, 4>,  S<0, 2, 1, 3>,  S<0, 2, 1, 3>,              3,              2,              2,         1,  S<1, 8, 32, 1>,  S<0, 1, 3, 2>,  S<0, 1, 3, 2>,             2,              4,              2,         8,           1,           2,              S<1, 4, 1, 64>,               2>;

using DeviceGemmInstance_3 = ck::tensor_operation::device::DeviceGemmXdlSplitKCShuffleStatic
//######|     M,    N,    K, K_batch| ALayout| BLayout| CLayout| AData| BData| CData| AccData| CShuffle|           A|           B|           C|           GEMM| NumGemmK| Block|  MPer|  NPer|  KPer| AK1| BK1| MPer| NPer| MXdl| NXdl|  ABlockTransfer| ABlockTransfer| ABlockTransfer| ABlockTransfer| ABlockTransfer| ABlockTransfer| ABlockLds|  BBlockTransfer| BBlockTransfer| BBlockTransfer| BlockTransfer| BBlockTransfer| BBlockTransfer| BBlockLds|    CShuffle|    CShuffle| CBlockTransferClusterLengths|  CBlockTransfer|
//######|     M,    N,    K, K_batch|        |        |        |  Type|  Type|  Type|    Type| DataType| Elementwise| Elementwise| Elementwise| Spacialization| Prefetch|  Size| Block| Block| Block|    |    |  XDL|  XDL|  Per|  Per|   ThreadCluster|  ThreadCluster| SrcAccessOrder|   SrcVectorDim|      SrcScalar|      DstScalar| AddExtraM|   ThreadCluster|  ThreadCluster| SrcAccessOrder|  SrcVectorDim|      SrcScalar|      DstScalar| AddExtraN| MXdlPerWave| NXdlPerWave|         _MBlock_MWaveMPerXdl| ScalarPerVector|
//######|     M,    N,    K, K_batch|        |        |        |      |      |      |        |         |   Operation|   Operation|   Operation|               |    Stage|      |      |      |      |    |    |     |     | Wave| Wave| Lengths_K0_M_K1|   ArrangeOrder|               |               |      PerVector|   PerVector_K1|          | Lengths_K0_N_K1|   ArrangeOrder|               |              |      PerVector|   PerVector_K1|          |  PerShuffle|  PerShuffle|         _NBlock_NWaveNPerXdl|   _NWaveNPerXdl|
//######|     M,    N,    K, K_batch|        |        |        |      |      |      |        |         |            |            |            |               |         |      |      |      |      |    |    |     |     |     |     |                |               |               |               |               |               |          |                |               |               |              |               |               |          |            |            |                             |                |
            <16, 5120, 1280,       5, Row,      Row,     Row,   F16,   F16,   F16,     F32,      F16,  AElementOp,  BElementOp,  CElementOp,    GemmDefault,        3,   256,    16,   128,    32,   8,   2,   16,   16,    1,    2,  S<1, 4, 16, 4>,  S<0, 2, 1, 3>,  S<0, 2, 1, 3>,              3,              2,              2,         1,  S<1, 8, 32, 1>,  S<0, 1, 3, 2>,  S<0, 1, 3, 2>,             2,              4,              2,         8,           1,           2,              S<1, 4, 1, 64>,               2>;


Wenkai's avatar
Wenkai committed
90
#endif
Wenkai's avatar
Wenkai committed
91
#else
wangshaojie6's avatar
wangshaojie6 committed
92
// clang-format off
Wenkai's avatar
Wenkai committed
93
using DeviceGemmInstance = ck::tensor_operation::device::DeviceGemmXdlSplitKCShuffleSmallGemm
wangshaojie6's avatar
wangshaojie6 committed
94
95
96
97
//######| ALayout| BLayout| CLayout| AData| BData| CData| AccData| CShuffle|           A|           B|           C|           GEMM| NumGemmK| Block|  MPer|  NPer|  KPer| AK1| BK1| MPer| NPer| MXdl| NXdl|  ABlockTransfer| ABlockTransfer| ABlockTransfer| ABlockTransfer| ABlockTransfer| ABlockTransfer| ABlockLds|  BBlockTransfer| BBlockTransfer| BBlockTransfer| BlockTransfer| BBlockTransfer| BBlockTransfer| BBlockLds|    CShuffle|    CShuffle| CBlockTransferClusterLengths|  CBlockTransfer|
//######|        |        |        |  Type|  Type|  Type|    Type| DataType| Elementwise| Elementwise| Elementwise| Spacialization| Prefetch|  Size| Block| Block| Block|    |    |  XDL|  XDL|  Per|  Per|   ThreadCluster|  ThreadCluster| SrcAccessOrder|   SrcVectorDim|      SrcScalar|      DstScalar| AddExtraM|   ThreadCluster|  ThreadCluster| SrcAccessOrder|  SrcVectorDim|      SrcScalar|      DstScalar| AddExtraN| MXdlPerWave| NXdlPerWave|         _MBlock_MWaveMPerXdl| ScalarPerVector|
//######|        |        |        |      |      |      |        |         |   Operation|   Operation|   Operation|               |    Stage|      |      |      |      |    |    |     |     | Wave| Wave| Lengths_K0_M_K1|   ArrangeOrder|               |               |      PerVector|   PerVector_K1|          | Lengths_K0_N_K1|   ArrangeOrder|               |              |      PerVector|   PerVector_K1|          |  PerShuffle|  PerShuffle|         _NBlock_NWaveNPerXdl|   _NWaveNPerXdl|
//######|        |        |        |      |      |      |        |         |            |            |            |               |         |      |      |      |      |    |    |     |     |     |     |                |               |               |               |               |               |          |                |               |               |              |               |               |          |            |            |                             |                |
wangshaojie6's avatar
wangshaojie6 committed
98
            <Row,      Row,     Row,   F16,   F16,   F16,     F32,      F16,  AElementOp,  BElementOp,  CElementOp,    GemmDefault,        3,   256,    16,   128,    32,   8,   2,   16,   16,    1,    2,  S<1, 4, 16, 4>,  S<0, 2, 1, 3>,  S<0, 2, 1, 3>,              3,              2,              2,         1,  S<1, 8, 32, 1>,  S<0, 1, 3, 2>,  S<0, 1, 3, 2>,             2,              4,              2,         8,           1,           1,              S<1, 16, 1, 16>,               2>;
Wenkai's avatar
Wenkai committed
99
            //<Row,      Row,     Row,   F16,   F16,   F16,     F32,      F16,  AElementOp,  BElementOp,  CElementOp,    GemmDefault,        3,   256,    16,   256,    32,   8,   2,   16,   16,    1,    4,  S<1, 4, 16, 4>,  S<0, 2, 1, 3>,  S<0, 2, 1, 3>,              3,              2,              2,         1,  S<1, 4, 64, 1>,  S<0, 1, 3, 2>,  S<0, 1, 3, 2>,             2,              4,              2,         8,           1,           2,              S<1, 4, 1, 64>,               2>;
Wenkai's avatar
Wenkai committed
100
                     
wangshaojie6's avatar
wangshaojie6 committed
101
102
// clang-format on

Wenkai's avatar
Wenkai committed
103
104
#endif  

wangshaojie6's avatar
wangshaojie6 committed
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
using ReferenceGemmInstance = ck::tensor_operation::host::
    ReferenceGemm<ADataType, BDataType, CDataType, AccDataType, AElementOp, BElementOp, CElementOp>;

int main(int argc, char* argv[])
{
    bool do_verification = true;
    int init_method      = 1;
    bool time_kernel     = false;

    // GEMM shape
    ck::index_t M = 3840;
    ck::index_t N = 4096;
    ck::index_t K = 4096;

    ck::index_t StrideA = 4096;
    ck::index_t StrideB = 4096;
    ck::index_t StrideC = 4096;

    ck::index_t splitk = 2;

    if(argc == 4)
    {
        do_verification = std::stoi(argv[1]);
        init_method     = std::stoi(argv[2]);
        time_kernel     = std::stoi(argv[3]);
    }
    else if(argc == 11)
    {
        do_verification = std::stoi(argv[1]);
        init_method     = std::stoi(argv[2]);
        time_kernel     = std::stoi(argv[3]);

        M = std::stoi(argv[4]);
        N = std::stoi(argv[5]);
        K = std::stoi(argv[6]);

        StrideA = std::stoi(argv[7]);
        StrideB = std::stoi(argv[8]);
        StrideC = std::stoi(argv[9]);

        splitk = std::stoi(argv[10]);
    }
    else
    {
        printf("arg1: verification (0=no, 1=yes)\n");
        printf("arg2: initialization (0=no init, 1=integer value, 2=decimal value)\n");
        printf("arg3: time kernel (0=n0, 1=yes)\n");
        printf("arg4 to 9: M (256x), N(128x), K(32x), StrideA, StrideB, StrideC\n");
        exit(0);
    }

    auto f_host_tensor_descriptor =
        [](std::size_t row, std::size_t col, std::size_t stride, auto layout) {
            if(std::is_same<decltype(layout), ck::tensor_layout::gemm::RowMajor>::value)
            {
                return HostTensorDescriptor(std::vector<std::size_t>({row, col}),
                                            std::vector<std::size_t>({stride, 1}));
            }
            else
            {
                return HostTensorDescriptor(std::vector<std::size_t>({row, col}),
                                            std::vector<std::size_t>({1, stride}));
            }
        };

    Tensor<ADataType> a_m_k(f_host_tensor_descriptor(M, K, StrideA, ALayout{}));
    Tensor<BDataType> b_k_n(f_host_tensor_descriptor(K, N, StrideB, BLayout{}));
    Tensor<CDataType> c_m_n_host_result(f_host_tensor_descriptor(M, N, StrideC, CLayout{}));
    Tensor<CDataType> c_m_n_device_result(f_host_tensor_descriptor(M, N, StrideC, CLayout{}));

    std::cout << "a_m_k: " << a_m_k.mDesc << std::endl;
    std::cout << "b_k_n: " << b_k_n.mDesc << std::endl;
    std::cout << "c_m_n: " << c_m_n_host_result.mDesc << std::endl;

    switch(init_method)
    {
    case 0: break;
    case 1:
183
184
        a_m_k.GenerateTensorValue(GeneratorTensor_2<ADataType>{-2, 2});
        b_k_n.GenerateTensorValue(GeneratorTensor_2<BDataType>{-2, 2});
wangshaojie6's avatar
wangshaojie6 committed
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
        break;
    case 2:
        a_m_k.GenerateTensorValue(GeneratorTensor_3<ADataType>{0.0, 1.0});
        b_k_n.GenerateTensorValue(GeneratorTensor_3<BDataType>{-0.5, 0.5});
        break;
    default:
        a_m_k.GenerateTensorValue(GeneratorTensor_Sequential<0>{});
        b_k_n.GenerateTensorValue(GeneratorTensor_Sequential<1>{});
    }

    DeviceMem a_m_k_device_buf(sizeof(ADataType) * a_m_k.mDesc.GetElementSpace());
    DeviceMem b_k_n_device_buf(sizeof(BDataType) * b_k_n.mDesc.GetElementSpace());
    DeviceMem c_m_n_device_buf(sizeof(CDataType) * c_m_n_device_result.mDesc.GetElementSpace());

    a_m_k_device_buf.ToDevice(a_m_k.mData.data());
    b_k_n_device_buf.ToDevice(b_k_n.mData.data());

    auto a_element_op = AElementOp{};
    auto b_element_op = BElementOp{};
    auto c_element_op = CElementOp{};

wangshaojie6's avatar
wangshaojie6 committed
206
207
208
209
    std::cout << "a device buf: " << a_m_k_device_buf.GetDeviceBuffer() << std::endl;
    std::cout << "b device buf: " << b_k_n_device_buf.GetDeviceBuffer() << std::endl;
    std::cout << "c device buf: " << c_m_n_device_buf.GetDeviceBuffer() << std::endl;

wangshaojie6's avatar
wangshaojie6 committed
210
#if USEING_STATIC_KERNEL
wangshaojie6's avatar
wangshaojie6 committed
211
    // do GEMM
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
    if(M == 16 && N == 1152 && K == 5120 && splitk == 8)
    {
        auto gemm = DeviceGemmInstance_0{};
        auto invoker  = gemm.MakeInvoker();
        auto argument = gemm.MakeArgument(static_cast<ADataType*>(a_m_k_device_buf.GetDeviceBuffer()),
                                          static_cast<BDataType*>(b_k_n_device_buf.GetDeviceBuffer()),
                                          static_cast<CDataType*>(c_m_n_device_buf.GetDeviceBuffer()),
                                          M,
                                          N,
                                          K,
                                          StrideA,
                                          StrideB,
                                          StrideC,
                                          a_element_op,
                                          b_element_op,
                                          c_element_op,
                                          splitk);

        if(!gemm.IsSupportedArgument(argument))
        {
            std::cout << gemm.GetTypeString() << " does not support this problem" << std::endl;

            return 0;
        }

        float ave_time = invoker.Run(argument, StreamConfig{nullptr, time_kernel});

        std::size_t flop = std::size_t(2) * M * N * K;
        std::size_t num_btype =
            sizeof(ADataType) * M * K + sizeof(BDataType) * K * N + sizeof(CDataType) * M * N;

        float tflops = static_cast<float>(flop) / 1.E9 / ave_time;

        float gb_per_sec = num_btype / 1.E6 / ave_time;

        std::cout << "Perf: " << ave_time << " ms, " << tflops << " TFlops, " << gb_per_sec << " GB/s, "
                  << gemm.GetTypeString() << std::endl;

        c_m_n_device_buf.FromDevice(c_m_n_device_result.mData.data());

        if(do_verification)
        {
            auto ref_gemm    = ReferenceGemmInstance{};
            auto ref_invoker = ref_gemm.MakeInvoker();

            auto ref_argument = ref_gemm.MakeArgument(
                a_m_k, b_k_n, c_m_n_host_result, a_element_op, b_element_op, c_element_op);

            ref_invoker.Run(ref_argument);

            return ck::utils::check_err(c_m_n_device_result.mData, c_m_n_host_result.mData) ? 0 : 1;
        }
    }
    else if(M == 16 && N == 5120 && K == 384 && splitk == 4)
wangshaojie6's avatar
wangshaojie6 committed
266
    {
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
        auto gemm = DeviceGemmInstance_1{};
        auto invoker  = gemm.MakeInvoker();
        auto argument = gemm.MakeArgument(static_cast<ADataType*>(a_m_k_device_buf.GetDeviceBuffer()),
                                          static_cast<BDataType*>(b_k_n_device_buf.GetDeviceBuffer()),
                                          static_cast<CDataType*>(c_m_n_device_buf.GetDeviceBuffer()),
                                          M,
                                          N,
                                          K,
                                          StrideA,
                                          StrideB,
                                          StrideC,
                                          a_element_op,
                                          b_element_op,
                                          c_element_op,
                                          splitk);

        if(!gemm.IsSupportedArgument(argument))
        {
            std::cout << gemm.GetTypeString() << " does not support this problem" << std::endl;

            return 0;
        }

        float ave_time = invoker.Run(argument, StreamConfig{nullptr, time_kernel});
wangshaojie6's avatar
wangshaojie6 committed
291

292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
        std::size_t flop = std::size_t(2) * M * N * K;
        std::size_t num_btype =
            sizeof(ADataType) * M * K + sizeof(BDataType) * K * N + sizeof(CDataType) * M * N;

        float tflops = static_cast<float>(flop) / 1.E9 / ave_time;

        float gb_per_sec = num_btype / 1.E6 / ave_time;

        std::cout << "Perf: " << ave_time << " ms, " << tflops << " TFlops, " << gb_per_sec << " GB/s, "
                  << gemm.GetTypeString() << std::endl;

        c_m_n_device_buf.FromDevice(c_m_n_device_result.mData.data());

        if(do_verification)
        {
            auto ref_gemm    = ReferenceGemmInstance{};
            auto ref_invoker = ref_gemm.MakeInvoker();

            auto ref_argument = ref_gemm.MakeArgument(
                a_m_k, b_k_n, c_m_n_host_result, a_element_op, b_element_op, c_element_op);

            ref_invoker.Run(ref_argument);

            return ck::utils::check_err(c_m_n_device_result.mData, c_m_n_host_result.mData) ? 0 : 1;
        }
wangshaojie6's avatar
wangshaojie6 committed
317
    }
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
    else if(M == 16 && N == 1280 && K == 5120 && splitk == 8)
    {
        auto gemm = DeviceGemmInstance_2{};
        auto invoker  = gemm.MakeInvoker();
        auto argument = gemm.MakeArgument(static_cast<ADataType*>(a_m_k_device_buf.GetDeviceBuffer()),
                                          static_cast<BDataType*>(b_k_n_device_buf.GetDeviceBuffer()),
                                          static_cast<CDataType*>(c_m_n_device_buf.GetDeviceBuffer()),
                                          M,
                                          N,
                                          K,
                                          StrideA,
                                          StrideB,
                                          StrideC,
                                          a_element_op,
                                          b_element_op,
                                          c_element_op,
                                          splitk);

        if(!gemm.IsSupportedArgument(argument))
        {
            std::cout << gemm.GetTypeString() << " does not support this problem" << std::endl;

            return 0;
        }

        float ave_time = invoker.Run(argument, StreamConfig{nullptr, time_kernel});
wangshaojie6's avatar
wangshaojie6 committed
344

345
346
347
        std::size_t flop = std::size_t(2) * M * N * K;
        std::size_t num_btype =
            sizeof(ADataType) * M * K + sizeof(BDataType) * K * N + sizeof(CDataType) * M * N;
wangshaojie6's avatar
wangshaojie6 committed
348

349
        float tflops = static_cast<float>(flop) / 1.E9 / ave_time;
wangshaojie6's avatar
wangshaojie6 committed
350

351
        float gb_per_sec = num_btype / 1.E6 / ave_time;
wangshaojie6's avatar
wangshaojie6 committed
352

353
354
        std::cout << "Perf: " << ave_time << " ms, " << tflops << " TFlops, " << gb_per_sec << " GB/s, "
                  << gemm.GetTypeString() << std::endl;
wangshaojie6's avatar
wangshaojie6 committed
355

356
        c_m_n_device_buf.FromDevice(c_m_n_device_result.mData.data());
wangshaojie6's avatar
wangshaojie6 committed
357

358
359
360
361
        if(do_verification)
        {
            auto ref_gemm    = ReferenceGemmInstance{};
            auto ref_invoker = ref_gemm.MakeInvoker();
wangshaojie6's avatar
wangshaojie6 committed
362

363
364
365
366
367
368
369
370
371
            auto ref_argument = ref_gemm.MakeArgument(
                a_m_k, b_k_n, c_m_n_host_result, a_element_op, b_element_op, c_element_op);

            ref_invoker.Run(ref_argument);

            return ck::utils::check_err(c_m_n_device_result.mData, c_m_n_host_result.mData) ? 0 : 1;
        }
    }
    else if(M == 16 && N == 5120 && K == 1280 && splitk == 5)
wangshaojie6's avatar
wangshaojie6 committed
372
    {
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
        auto gemm = DeviceGemmInstance_3{};
        auto invoker  = gemm.MakeInvoker();
        auto argument = gemm.MakeArgument(static_cast<ADataType*>(a_m_k_device_buf.GetDeviceBuffer()),
                                          static_cast<BDataType*>(b_k_n_device_buf.GetDeviceBuffer()),
                                          static_cast<CDataType*>(c_m_n_device_buf.GetDeviceBuffer()),
                                          M,
                                          N,
                                          K,
                                          StrideA,
                                          StrideB,
                                          StrideC,
                                          a_element_op,
                                          b_element_op,
                                          c_element_op,
                                          splitk);

        if(!gemm.IsSupportedArgument(argument))
        {
            std::cout << gemm.GetTypeString() << " does not support this problem" << std::endl;

            return 0;
        }

        float ave_time = invoker.Run(argument, StreamConfig{nullptr, time_kernel});

        std::size_t flop = std::size_t(2) * M * N * K;
        std::size_t num_btype =
            sizeof(ADataType) * M * K + sizeof(BDataType) * K * N + sizeof(CDataType) * M * N;

        float tflops = static_cast<float>(flop) / 1.E9 / ave_time;

        float gb_per_sec = num_btype / 1.E6 / ave_time;

        std::cout << "Perf: " << ave_time << " ms, " << tflops << " TFlops, " << gb_per_sec << " GB/s, "
                  << gemm.GetTypeString() << std::endl;

        c_m_n_device_buf.FromDevice(c_m_n_device_result.mData.data());

        if(do_verification)
        {
            auto ref_gemm    = ReferenceGemmInstance{};
            auto ref_invoker = ref_gemm.MakeInvoker();
wangshaojie6's avatar
wangshaojie6 committed
415

416
417
            auto ref_argument = ref_gemm.MakeArgument(
                a_m_k, b_k_n, c_m_n_host_result, a_element_op, b_element_op, c_element_op);
wangshaojie6's avatar
wangshaojie6 committed
418

419
            ref_invoker.Run(ref_argument);
wangshaojie6's avatar
wangshaojie6 committed
420

421
422
            return ck::utils::check_err(c_m_n_device_result.mData, c_m_n_host_result.mData) ? 0 : 1;
        }
wangshaojie6's avatar
wangshaojie6 committed
423
424
    }

wangshaojie6's avatar
wangshaojie6 committed
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
#else
    // dynamic kernel
    {
        auto gemm = DeviceGemmInstance{};
        auto invoker  = gemm.MakeInvoker();
        auto argument = gemm.MakeArgument(static_cast<ADataType*>(a_m_k_device_buf.GetDeviceBuffer()),
                                          static_cast<BDataType*>(b_k_n_device_buf.GetDeviceBuffer()),
                                          static_cast<CDataType*>(c_m_n_device_buf.GetDeviceBuffer()),
                                          M,
                                          N,
                                          K,
                                          StrideA,
                                          StrideB,
                                          StrideC,
                                          a_element_op,
                                          b_element_op,
                                          c_element_op,
                                          splitk);

        if(!gemm.IsSupportedArgument(argument))
        {
            std::cout << gemm.GetTypeString() << " does not support this problem" << std::endl;

            return 0;
        }

        float ave_time = invoker.Run(argument, StreamConfig{nullptr, time_kernel});

        std::size_t flop = std::size_t(2) * M * N * K;
        std::size_t num_btype =
            sizeof(ADataType) * M * K + sizeof(BDataType) * K * N + sizeof(CDataType) * M * N;

        float tflops = static_cast<float>(flop) / 1.E9 / ave_time;

        float gb_per_sec = num_btype / 1.E6 / ave_time;

        std::cout << "Perf: " << ave_time << " ms, " << tflops << " TFlops, " << gb_per_sec << " GB/s, "
                  << gemm.GetTypeString() << std::endl;

        c_m_n_device_buf.FromDevice(c_m_n_device_result.mData.data());

        if(do_verification)
        {
            auto ref_gemm    = ReferenceGemmInstance{};
            auto ref_invoker = ref_gemm.MakeInvoker();

            auto ref_argument = ref_gemm.MakeArgument(
                a_m_k, b_k_n, c_m_n_host_result, a_element_op, b_element_op, c_element_op);

            ref_invoker.Run(ref_argument);

            return ck::utils::check_err(c_m_n_device_result.mData, c_m_n_host_result.mData) ? 0 : 1;
        }
    }

    
#endif

wangshaojie6's avatar
wangshaojie6 committed
483
484
    return 0;
}