gemm_xdl_fp16_splitk.cpp 14.2 KB
Newer Older
wangshaojie6's avatar
wangshaojie6 committed
1
2
3
4
5
6
7
8
9
10
11
12
13
14
#include <iostream>
#include <numeric>
#include <initializer_list>
#include <cstdlib>
#include <stdlib.h>
#include <half.hpp>
#include "check_err.hpp"
#include "config.hpp"
#include "device.hpp"
#include "host_tensor.hpp"
#include "host_tensor_generator.hpp"
#include "device_tensor.hpp"
#include "device_gemm_xdl.hpp"
#include "device_gemm_xdl_splitk_c_shuffle.hpp"
Wenkai's avatar
Wenkai committed
15
#include "device_gemm_xdl_splitk_c_shuffle_static.hpp"
wangshaojie6's avatar
wangshaojie6 committed
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
#include "device_gemm_xdl_cshuffle.hpp"
#include "element_wise_operation.hpp"
#include "reference_gemm.hpp"
#include "gemm_specialization.hpp"

template <ck::index_t... Is>
using S = ck::Sequence<Is...>;

using F16 = ck::half_t;
using F32 = float;

using Row = ck::tensor_layout::gemm::RowMajor;
using Col = ck::tensor_layout::gemm::ColumnMajor;

using PassThrough = ck::tensor_operation::element_wise::PassThrough;

using ADataType   = ck::half_t;
using BDataType   = ck::half_t;
using CDataType   = ck::half_t;
using AccDataType = float;

using ALayout = ck::tensor_layout::gemm::RowMajor;
wangshaojie6's avatar
wangshaojie6 committed
38
using BLayout = ck::tensor_layout::gemm::RowMajor;
39
//using BLayout = Col;
wangshaojie6's avatar
wangshaojie6 committed
40
41
42
43
44
45
46
47
using CLayout = ck::tensor_layout::gemm::RowMajor;

using AElementOp = ck::tensor_operation::element_wise::PassThrough;
using BElementOp = ck::tensor_operation::element_wise::PassThrough;
using CElementOp = ck::tensor_operation::element_wise::PassThrough;

static constexpr auto GemmDefault = ck::tensor_operation::device::GemmSpecialization::Default;

Wenkai's avatar
Wenkai committed
48
49
50
51
52
53
54
55
56
57
58
59
60

#if USEING_STATIC_KERNEL
using DeviceGemmInstance = ck::tensor_operation::device::DeviceGemmXdlSplitKCShuffleStatic
//######| ALayout| BLayout| CLayout| AData| BData| CData| AccData| CShuffle|           A|           B|           C|           GEMM| NumGemmK| Block|  MPer|  NPer|  KPer| AK1| BK1| MPer| NPer| MXdl| NXdl|  ABlockTransfer| ABlockTransfer| ABlockTransfer| ABlockTransfer| ABlockTransfer| ABlockTransfer| ABlockLds|  BBlockTransfer| BBlockTransfer| BBlockTransfer| BlockTransfer| BBlockTransfer| BBlockTransfer| BBlockLds|    CShuffle|    CShuffle| CBlockTransferClusterLengths|  CBlockTransfer|
//######|        |        |        |  Type|  Type|  Type|    Type| DataType| Elementwise| Elementwise| Elementwise| Spacialization| Prefetch|  Size| Block| Block| Block|    |    |  XDL|  XDL|  Per|  Per|   ThreadCluster|  ThreadCluster| SrcAccessOrder|   SrcVectorDim|      SrcScalar|      DstScalar| AddExtraM|   ThreadCluster|  ThreadCluster| SrcAccessOrder|  SrcVectorDim|      SrcScalar|      DstScalar| AddExtraN| MXdlPerWave| NXdlPerWave|         _MBlock_MWaveMPerXdl| ScalarPerVector|
//######|        |        |        |      |      |      |        |         |   Operation|   Operation|   Operation|               |    Stage|      |      |      |      |    |    |     |     | Wave| Wave| Lengths_K0_M_K1|   ArrangeOrder|               |               |      PerVector|   PerVector_K1|          | Lengths_K0_N_K1|   ArrangeOrder|               |              |      PerVector|   PerVector_K1|          |  PerShuffle|  PerShuffle|         _NBlock_NWaveNPerXdl|   _NWaveNPerXdl|
//######|        |        |        |      |      |      |        |         |            |            |            |               |         |      |      |      |      |    |    |     |     |     |     |                |               |               |               |               |               |          |                |               |               |              |               |               |          |            |            |                             |                |
            //<Row,      Row,     Row,   F16,   F16,   F16,     F32,      F16,  AElementOp,  BElementOp,  CElementOp,    GemmDefault,        3,   256,    16,   128,    32,   8,   2,   16,   16,    1,    2,  S<1, 4, 16, 4>,  S<0, 2, 1, 3>,  S<0, 2, 1, 3>,              3,              2,              2,         1,  S<1, 8, 32, 1>,  S<0, 1, 3, 2>,  S<0, 1, 3, 2>,             2,              4,              2,         8,           1,           2,              S<1, 4, 1, 64>,               2>;
            <Row,      Row,     Row,   F16,   F16,   F16,     F32,      F16,  AElementOp,  BElementOp,  CElementOp,    GemmDefault,        2,   256,    16,   128,    32,   8,   2,   16,   16,    1,    2,  S<1, 4, 16, 4>,  S<0, 2, 1, 3>,  S<0, 2, 1, 3>,              3,              2,              2,         1,  S<1, 8, 32, 1>,  S<0, 1, 3, 2>,  S<0, 1, 3, 2>,             2,              4,              2,         8,           1,           2,              S<1, 4, 1, 64>,               2>;
            //<Row,      Col,     Row,   F16,   F16,   F16,     F32,      F16,  AElementOp,  BElementOp,  CElementOp,    GemmDefault,        1,   256,    16,   128,    128,   8,   8,   16,   16,    1,    2,  S<1, 16, 16, 1>,  S<0, 2, 1, 3>,  S<0, 2, 1, 3>,              3,              8,              8,         1,  S<1, 16, 16, 1>,  S<0, 2, 1, 3>,  S<0, 2, 1, 3>,             3,              8,              8,         1,           1,           2,              S<1, 4, 1, 64>,               2>;
            //<Row,      Row,     Row,   F16,   F16,   F16,     F32,      F16,  AElementOp,  BElementOp,  CElementOp,    GemmDefault,        4,   256,    16,   128,    32,   8,   2,   16,   16,    1,    2,  S<1, 4, 16, 4>,  S<0, 2, 1, 3>,  S<0, 2, 1, 3>,              3,              2,              2,         1,  S<1, 8, 32, 1>,  S<0, 1, 3, 2>,  S<0, 1, 3, 2>,             2,              4,              2,         8,           1,           2,              S<1, 4, 1, 64>,               2>;

#else
wangshaojie6's avatar
wangshaojie6 committed
61
62
// clang-format off
using DeviceGemmInstance = ck::tensor_operation::device::DeviceGemmXdlSplitKCShuffle
wangshaojie6's avatar
wangshaojie6 committed
63
64
65
66
//######| ALayout| BLayout| CLayout| AData| BData| CData| AccData| CShuffle|           A|           B|           C|           GEMM| NumGemmK| Block|  MPer|  NPer|  KPer| AK1| BK1| MPer| NPer| MXdl| NXdl|  ABlockTransfer| ABlockTransfer| ABlockTransfer| ABlockTransfer| ABlockTransfer| ABlockTransfer| ABlockLds|  BBlockTransfer| BBlockTransfer| BBlockTransfer| BlockTransfer| BBlockTransfer| BBlockTransfer| BBlockLds|    CShuffle|    CShuffle| CBlockTransferClusterLengths|  CBlockTransfer|
//######|        |        |        |  Type|  Type|  Type|    Type| DataType| Elementwise| Elementwise| Elementwise| Spacialization| Prefetch|  Size| Block| Block| Block|    |    |  XDL|  XDL|  Per|  Per|   ThreadCluster|  ThreadCluster| SrcAccessOrder|   SrcVectorDim|      SrcScalar|      DstScalar| AddExtraM|   ThreadCluster|  ThreadCluster| SrcAccessOrder|  SrcVectorDim|      SrcScalar|      DstScalar| AddExtraN| MXdlPerWave| NXdlPerWave|         _MBlock_MWaveMPerXdl| ScalarPerVector|
//######|        |        |        |      |      |      |        |         |   Operation|   Operation|   Operation|               |    Stage|      |      |      |      |    |    |     |     | Wave| Wave| Lengths_K0_M_K1|   ArrangeOrder|               |               |      PerVector|   PerVector_K1|          | Lengths_K0_N_K1|   ArrangeOrder|               |              |      PerVector|   PerVector_K1|          |  PerShuffle|  PerShuffle|         _NBlock_NWaveNPerXdl|   _NWaveNPerXdl|
//######|        |        |        |      |      |      |        |         |            |            |            |               |         |      |      |      |      |    |    |     |     |     |     |                |               |               |               |               |               |          |                |               |               |              |               |               |          |            |            |                             |                |
wangshaojie6's avatar
wangshaojie6 committed
67
68
            <Row,      Row,     Row,   F16,   F16,   F16,     F32,      F16,  AElementOp,  BElementOp,  CElementOp,    GemmDefault,        3,   256,    16,   128,    32,   8,   2,   16,   16,    1,    2,  S<1, 4, 16, 4>,  S<0, 2, 1, 3>,  S<0, 2, 1, 3>,              3,              2,              2,         1,  S<1, 8, 32, 1>,  S<0, 1, 3, 2>,  S<0, 1, 3, 2>,             2,              4,              2,         8,           1,           1,              S<1, 16, 1, 16>,               2>;
            //<Row,      Row,     Row,   F16,   F16,   F16,     F32,      F16,  AElementOp,  BElementOp,  CElementOp,    GemmDefault,        4,   256,    16,   128,    32,   8,   2,   16,   16,    1,    2,  S<1, 4, 16, 4>,  S<0, 2, 1, 3>,  S<0, 2, 1, 3>,              3,              2,              2,         1,  S<1, 8, 32, 1>,  S<0, 1, 3, 2>,  S<0, 1, 3, 2>,             2,              4,              2,         8,           1,           1,              S<1, 16, 1, 16>,               2>;
Wenkai's avatar
Wenkai committed
69
                     
wangshaojie6's avatar
wangshaojie6 committed
70
71
// clang-format on

Wenkai's avatar
Wenkai committed
72
73
#endif  

wangshaojie6's avatar
wangshaojie6 committed
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
using ReferenceGemmInstance = ck::tensor_operation::host::
    ReferenceGemm<ADataType, BDataType, CDataType, AccDataType, AElementOp, BElementOp, CElementOp>;

int main(int argc, char* argv[])
{
    bool do_verification = true;
    int init_method      = 1;
    bool time_kernel     = false;

    // GEMM shape
    ck::index_t M = 3840;
    ck::index_t N = 4096;
    ck::index_t K = 4096;

    ck::index_t StrideA = 4096;
    ck::index_t StrideB = 4096;
    ck::index_t StrideC = 4096;

    ck::index_t splitk = 2;

    if(argc == 4)
    {
        do_verification = std::stoi(argv[1]);
        init_method     = std::stoi(argv[2]);
        time_kernel     = std::stoi(argv[3]);
    }
    else if(argc == 11)
    {
        do_verification = std::stoi(argv[1]);
        init_method     = std::stoi(argv[2]);
        time_kernel     = std::stoi(argv[3]);

        M = std::stoi(argv[4]);
        N = std::stoi(argv[5]);
        K = std::stoi(argv[6]);

        StrideA = std::stoi(argv[7]);
        StrideB = std::stoi(argv[8]);
        StrideC = std::stoi(argv[9]);

        splitk = std::stoi(argv[10]);
    }
    else
    {
        printf("arg1: verification (0=no, 1=yes)\n");
        printf("arg2: initialization (0=no init, 1=integer value, 2=decimal value)\n");
        printf("arg3: time kernel (0=n0, 1=yes)\n");
        printf("arg4 to 9: M (256x), N(128x), K(32x), StrideA, StrideB, StrideC\n");
        exit(0);
    }

    auto f_host_tensor_descriptor =
        [](std::size_t row, std::size_t col, std::size_t stride, auto layout) {
            if(std::is_same<decltype(layout), ck::tensor_layout::gemm::RowMajor>::value)
            {
                return HostTensorDescriptor(std::vector<std::size_t>({row, col}),
                                            std::vector<std::size_t>({stride, 1}));
            }
            else
            {
                return HostTensorDescriptor(std::vector<std::size_t>({row, col}),
                                            std::vector<std::size_t>({1, stride}));
            }
        };

    Tensor<ADataType> a_m_k(f_host_tensor_descriptor(M, K, StrideA, ALayout{}));
    Tensor<BDataType> b_k_n(f_host_tensor_descriptor(K, N, StrideB, BLayout{}));
    Tensor<CDataType> c_m_n_host_result(f_host_tensor_descriptor(M, N, StrideC, CLayout{}));
    Tensor<CDataType> c_m_n_device_result(f_host_tensor_descriptor(M, N, StrideC, CLayout{}));

    std::cout << "a_m_k: " << a_m_k.mDesc << std::endl;
    std::cout << "b_k_n: " << b_k_n.mDesc << std::endl;
    std::cout << "c_m_n: " << c_m_n_host_result.mDesc << std::endl;

    switch(init_method)
    {
    case 0: break;
    case 1:
152
153
        a_m_k.GenerateTensorValue(GeneratorTensor_2<ADataType>{-2, 2});
        b_k_n.GenerateTensorValue(GeneratorTensor_2<BDataType>{-2, 2});
wangshaojie6's avatar
wangshaojie6 committed
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
        break;
    case 2:
        a_m_k.GenerateTensorValue(GeneratorTensor_3<ADataType>{0.0, 1.0});
        b_k_n.GenerateTensorValue(GeneratorTensor_3<BDataType>{-0.5, 0.5});
        break;
    default:
        a_m_k.GenerateTensorValue(GeneratorTensor_Sequential<0>{});
        b_k_n.GenerateTensorValue(GeneratorTensor_Sequential<1>{});
    }

    DeviceMem a_m_k_device_buf(sizeof(ADataType) * a_m_k.mDesc.GetElementSpace());
    DeviceMem b_k_n_device_buf(sizeof(BDataType) * b_k_n.mDesc.GetElementSpace());
    DeviceMem c_m_n_device_buf(sizeof(CDataType) * c_m_n_device_result.mDesc.GetElementSpace());

    a_m_k_device_buf.ToDevice(a_m_k.mData.data());
    b_k_n_device_buf.ToDevice(b_k_n.mData.data());

    auto a_element_op = AElementOp{};
    auto b_element_op = BElementOp{};
    auto c_element_op = CElementOp{};

wangshaojie6's avatar
wangshaojie6 committed
175
176
177
178
    std::cout << "a device buf: " << a_m_k_device_buf.GetDeviceBuffer() << std::endl;
    std::cout << "b device buf: " << b_k_n_device_buf.GetDeviceBuffer() << std::endl;
    std::cout << "c device buf: " << c_m_n_device_buf.GetDeviceBuffer() << std::endl;

wangshaojie6's avatar
wangshaojie6 committed
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
    // do GEMM
    auto gemm     = DeviceGemmInstance{};
    auto invoker  = gemm.MakeInvoker();
    auto argument = gemm.MakeArgument(static_cast<ADataType*>(a_m_k_device_buf.GetDeviceBuffer()),
                                      static_cast<BDataType*>(b_k_n_device_buf.GetDeviceBuffer()),
                                      static_cast<CDataType*>(c_m_n_device_buf.GetDeviceBuffer()),
                                      M,
                                      N,
                                      K,
                                      StrideA,
                                      StrideB,
                                      StrideC,
                                      a_element_op,
                                      b_element_op,
                                      c_element_op,
                                      splitk);

    if(!gemm.IsSupportedArgument(argument))
    {
        std::cout << gemm.GetTypeString() << " does not support this problem" << std::endl;

        return 0;
    }

    float ave_time = invoker.Run(argument, StreamConfig{nullptr, time_kernel});

    std::size_t flop = std::size_t(2) * M * N * K;
    std::size_t num_btype =
        sizeof(ADataType) * M * K + sizeof(BDataType) * K * N + sizeof(CDataType) * M * N;

    float tflops = static_cast<float>(flop) / 1.E9 / ave_time;

    float gb_per_sec = num_btype / 1.E6 / ave_time;

    std::cout << "Perf: " << ave_time << " ms, " << tflops << " TFlops, " << gb_per_sec << " GB/s, "
              << gemm.GetTypeString() << std::endl;

    c_m_n_device_buf.FromDevice(c_m_n_device_result.mData.data());

    if(do_verification)
    {
        auto ref_gemm    = ReferenceGemmInstance{};
        auto ref_invoker = ref_gemm.MakeInvoker();

        auto ref_argument = ref_gemm.MakeArgument(
            a_m_k, b_k_n, c_m_n_host_result, a_element_op, b_element_op, c_element_op);

        ref_invoker.Run(ref_argument);

        return ck::utils::check_err(c_m_n_device_result.mData, c_m_n_host_result.mData) ? 0 : 1;
    }

    return 0;
}