gemm_xdl_fp16.cpp 11.9 KB
Newer Older
1
2
3
4
5
6
#include <iostream>
#include <numeric>
#include <initializer_list>
#include <cstdlib>
#include <stdlib.h>
#include <half.hpp>
7
#include "check_err.hpp"
8
9
10
11
12
#include "config.hpp"
#include "device.hpp"
#include "host_tensor.hpp"
#include "host_tensor_generator.hpp"
#include "device_tensor.hpp"
Chao Liu's avatar
Chao Liu committed
13
#include "device_gemm_xdl.hpp"
Chao Liu's avatar
Chao Liu committed
14
#include "device_gemm_xdl_cshuffle.hpp"
15
#include "device_gemm_xdl_waveletmodel_cshuffle.hpp"
Chao Liu's avatar
Chao Liu committed
16
#include "element_wise_operation.hpp"
Chao Liu's avatar
Chao Liu committed
17
#include "reference_gemm.hpp"
Chao Liu's avatar
Chao Liu committed
18
#include "gemm_specialization.hpp"
Chao Liu's avatar
Chao Liu committed
19

Chao Liu's avatar
Chao Liu committed
20
21
22
template <ck::index_t... Is>
using S = ck::Sequence<Is...>;

Chao Liu's avatar
Chao Liu committed
23
24
25
26
27
28
29
30
using F16 = ck::half_t;
using F32 = float;

using Row = ck::tensor_layout::gemm::RowMajor;
using Col = ck::tensor_layout::gemm::ColumnMajor;

using PassThrough = ck::tensor_operation::element_wise::PassThrough;

31
32
33
34
35
using ADataType        = F16;
using BDataType        = F16;
using AccDataType      = F32;
using CShuffleDataType = F32;
using CDataType        = F16;
Chao Liu's avatar
Chao Liu committed
36

37
38
39
using ALayout = Row;
using BLayout = Col;
using CLayout = Row;
Chao Liu's avatar
Chao Liu committed
40

41
42
43
using AElementOp = PassThrough;
using BElementOp = PassThrough;
using CElementOp = PassThrough;
Chao Liu's avatar
Chao Liu committed
44

45
static constexpr auto GemmDefault = ck::tensor_operation::device::GemmSpecialization::Default;
Chao Liu's avatar
Chao Liu committed
46

Chao Liu's avatar
Chao Liu committed
47
// clang-format off
Chao Liu's avatar
Chao Liu committed
48
using DeviceGemmInstance = ck::tensor_operation::device::DeviceGemm_Xdl_CShuffle
Chao Liu's avatar
Chao Liu committed
49
50
51
52
53
//######| ALayout| BLayout| CLayout| AData| BData| CData| AccData| CShuffle|           A|           B|           C|           GEMM| NumGemmK| Block|  MPer|  NPer|  KPer| AK1| BK1| MPer| NPer| MXdl| NXdl|  ABlockTransfer| ABlockTransfer| ABlockTransfer| ABlockTransfer| ABlockTransfer| ABlockTransfer| ABlockLds|  BBlockTransfer| BBlockTransfer| BBlockTransfer| BlockTransfer| BBlockTransfer| BBlockTransfer| BBlockLds|    CShuffle|    CShuffle| CBlockTransferClusterLengths|  CBlockTransfer|
//######|        |        |        |  Type|  Type|  Type|    Type| DataType| Elementwise| Elementwise| Elementwise| Spacialization| Prefetch|  Size| Block| Block| Block|    |    |  XDL|  XDL|  Per|  Per|   ThreadCluster|  ThreadCluster| SrcAccessOrder|   SrcVectorDim|      SrcScalar|      DstScalar| AddExtraM|   ThreadCluster|  ThreadCluster| SrcAccessOrder|  SrcVectorDim|      SrcScalar|      DstScalar| AddExtraN| MXdlPerWave| NXdlPerWave|         _MBlock_MWaveMPerXdl| ScalarPerVector|
//######|        |        |        |      |      |      |        |         |   Operation|   Operation|   Operation|               |    Stage|      |      |      |      |    |    |     |     | Wave| Wave| Lengths_K0_M_K1|   ArrangeOrder|               |               |      PerVector|   PerVector_K1|          | Lengths_K0_N_K1|   ArrangeOrder|               |              |      PerVector|   PerVector_K1|          |  PerShuffle|  PerShuffle|         _NBlock_NWaveNPerXdl|   _NWaveNPerXdl|
//######|        |        |        |      |      |      |        |         |            |            |            |               |         |      |      |      |      |    |    |     |     |     |     |                |               |               |               |               |               |          |                |               |               |              |               |               |          |            |            |                             |                |
        <     Row,     Col,     Row,   F16,   F16,   F16,     F32,      F32,  AElementOp,  BElementOp,  CElementOp,    GemmDefault,        1,   256,   256,   128,    32,   8,   8,   32,   32,    4,    2,     S<4, 64, 1>,     S<1, 0, 2>,     S<1, 0, 2>,              2,              8,              8,         1,     S<4, 64, 1>,     S<1, 0, 2>,     S<1, 0, 2>,             2,              8,              8,         1,           1,           1,               S<1, 32, 1, 8>,               8>;
54
55

using DeviceGemmInstance_WaveletModel = ck::tensor_operation::device::DeviceGemm_Xdl_WaveletModel_CShuffle
56
57
58
//######| ALayout| BLayout| CLayout| AData| BData| CData| AccData| CShuffle|           A|           B|           C|           GEMM| NumGemmK| ABBlockTransfer|       BlockGemm|  MPer|  NPer|  KPer| AK1| BK1| MPer| NPer| MXdl| NXdl|  ABlockTransfer| ABlockTransfer| ABlockTransfer| ABlockTransfer| ABlockTransfer| ABlockTransfer| ABlockLds|  BBlockTransfer| BBlockTransfer| BBlockTransfer| BlockTransfer| BBlockTransfer| BBlockTransfer| BBlockLds|    CShuffle|    CShuffle| CBlockTransferClusterLengths|  CBlockTransfer|
//######|        |        |        |  Type|  Type|  Type|    Type| DataType| Elementwise| Elementwise| Elementwise| Spacialization| Prefetch| ThreadGroupSize| ThreadGroupSize| Block| Block| Block|    |    |  XDL|  XDL|  Per|  Per|   ThreadCluster|  ThreadCluster| SrcAccessOrder|   SrcVectorDim|      SrcScalar|      DstScalar| AddExtraM|   ThreadCluster|  ThreadCluster| SrcAccessOrder|  SrcVectorDim|      SrcScalar|      DstScalar| AddExtraN| MXdlPerWave| NXdlPerWave|         _MBlock_MWaveMPerXdl| ScalarPerVector|
//######|        |        |        |      |      |      |        |         |   Operation|   Operation|   Operation|               |    Stage|                |                |      |      |      |    |    |     |     | Wave| Wave| Lengths_K0_M_K1|   ArrangeOrder|               |               |      PerVector|   PerVector_K1|          | Lengths_K0_N_K1|   ArrangeOrder|               |              |      PerVector|   PerVector_K1|          |  PerShuffle|  PerShuffle|         _NBlock_NWaveNPerXdl|   _NWaveNPerXdl|
59
60
//######|        |        |        |      |      |      |        |         |            |            |            |               |         |      |      |      |      |    |    |     |     |     |     |                |               |               |               |               |               |          |                |               |               |              |               |               |          |               |          |            |            |                             |                |
        <     Row,     Col,     Row,   F16,   F16,   F16,     F32,      F16,  AElementOp,  BElementOp,  CElementOp,    GemmDefault,        1,             256,             256,   256,   128,    32,   8,   8,   32,   32,    4,    2,     S<4, 64, 1>,     S<1, 0, 2>,     S<1, 0, 2>,              2,              8,              8,         1,     S<4, 64, 1>,     S<1, 0, 2>,     S<1, 0, 2>,             2,              8,              8,         1,           1,           1,               S<1, 32, 1,8>,                8>;
61
// clang-format on
Chao Liu's avatar
Chao Liu committed
62

Chao Liu's avatar
Chao Liu committed
63
using ReferenceGemmInstance = ck::tensor_operation::host::
64
    ReferenceGemm<ADataType, BDataType, CDataType, AccDataType, AElementOp, BElementOp, CElementOp>;
65
66
67

int main(int argc, char* argv[])
{
JD's avatar
JD committed
68
69
70
    bool do_verification = true;
    int init_method      = 1;
    bool time_kernel     = false;
71
72
73
74
75
76
77
78
79
80

    // GEMM shape
    ck::index_t M = 3840;
    ck::index_t N = 4096;
    ck::index_t K = 4096;

    ck::index_t StrideA = 4096;
    ck::index_t StrideB = 4096;
    ck::index_t StrideC = 4096;

81
82
83
84
85
    if(argc == 1)
    {
        // use default case
    }
    else if(argc == 4)
Chao Liu's avatar
Chao Liu committed
86
    {
87
88
        do_verification = std::stoi(argv[1]);
        init_method     = std::stoi(argv[2]);
JD's avatar
JD committed
89
        time_kernel     = std::stoi(argv[3]);
Chao Liu's avatar
Chao Liu committed
90
91
92
93
94
    }
    else if(argc == 10)
    {
        do_verification = std::stoi(argv[1]);
        init_method     = std::stoi(argv[2]);
JD's avatar
JD committed
95
        time_kernel     = std::stoi(argv[3]);
Chao Liu's avatar
Chao Liu committed
96
97
98
99

        M = std::stoi(argv[4]);
        N = std::stoi(argv[5]);
        K = std::stoi(argv[6]);
100

Chao Liu's avatar
Chao Liu committed
101
102
103
104
105
106
107
108
        StrideA = std::stoi(argv[7]);
        StrideB = std::stoi(argv[8]);
        StrideC = std::stoi(argv[9]);
    }
    else
    {
        printf("arg1: verification (0=no, 1=yes)\n");
        printf("arg2: initialization (0=no init, 1=integer value, 2=decimal value)\n");
109
        printf("arg3: time kernel (0=no, 1=yes)\n");
Chao Liu's avatar
Chao Liu committed
110
111
112
        printf("arg4 to 9: M (256x), N(128x), K(32x), StrideA, StrideB, StrideC\n");
        exit(0);
    }
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129

    auto f_host_tensor_descriptor =
        [](std::size_t row, std::size_t col, std::size_t stride, auto layout) {
            if(std::is_same<decltype(layout), ck::tensor_layout::gemm::RowMajor>::value)
            {
                return HostTensorDescriptor(std::vector<std::size_t>({row, col}),
                                            std::vector<std::size_t>({stride, 1}));
            }
            else
            {
                return HostTensorDescriptor(std::vector<std::size_t>({row, col}),
                                            std::vector<std::size_t>({1, stride}));
            }
        };

    Tensor<ADataType> a_m_k(f_host_tensor_descriptor(M, K, StrideA, ALayout{}));
    Tensor<BDataType> b_k_n(f_host_tensor_descriptor(K, N, StrideB, BLayout{}));
130
131
    Tensor<CDataType> c_m_n_host_result(f_host_tensor_descriptor(M, N, StrideC, CLayout{}));
    Tensor<CDataType> c_m_n_device_result(f_host_tensor_descriptor(M, N, StrideC, CLayout{}));
132
133
134
135
136
137
138
139
140

    std::cout << "a_m_k: " << a_m_k.mDesc << std::endl;
    std::cout << "b_k_n: " << b_k_n.mDesc << std::endl;
    std::cout << "c_m_n: " << c_m_n_host_result.mDesc << std::endl;

    switch(init_method)
    {
    case 0: break;
    case 1:
141
142
        a_m_k.GenerateTensorValue(GeneratorTensor_2<ADataType>{-5, 5});
        b_k_n.GenerateTensorValue(GeneratorTensor_2<BDataType>{-5, 5});
143
        break;
144
    case 2:
145
146
        a_m_k.GenerateTensorValue(GeneratorTensor_3<ADataType>{0.0, 1.0});
        b_k_n.GenerateTensorValue(GeneratorTensor_3<BDataType>{-0.5, 0.5});
147
148
149
150
        break;
    default:
        a_m_k.GenerateTensorValue(GeneratorTensor_Sequential<0>{});
        b_k_n.GenerateTensorValue(GeneratorTensor_Sequential<1>{});
151
152
153
154
155
156
157
158
159
    }

    DeviceMem a_m_k_device_buf(sizeof(ADataType) * a_m_k.mDesc.GetElementSpace());
    DeviceMem b_k_n_device_buf(sizeof(BDataType) * b_k_n.mDesc.GetElementSpace());
    DeviceMem c_m_n_device_buf(sizeof(CDataType) * c_m_n_device_result.mDesc.GetElementSpace());

    a_m_k_device_buf.ToDevice(a_m_k.mData.data());
    b_k_n_device_buf.ToDevice(b_k_n.mData.data());

Chao Liu's avatar
Chao Liu committed
160
161
162
163
    auto a_element_op = AElementOp{};
    auto b_element_op = BElementOp{};
    auto c_element_op = CElementOp{};

164
    // do GEMM
165
    //replace DeviceGemmInstance_WaveletModel for wavelet gemm pipeline
root's avatar
root committed
166
167
    //auto gemm     = DeviceGemmInstance_WaveletModel{};
    auto gemm     = DeviceGemmInstance{};
168
169
170
171
172
173
174
175
176
    auto invoker  = gemm.MakeInvoker();
    auto argument = gemm.MakeArgument(static_cast<ADataType*>(a_m_k_device_buf.GetDeviceBuffer()),
                                      static_cast<BDataType*>(b_k_n_device_buf.GetDeviceBuffer()),
                                      static_cast<CDataType*>(c_m_n_device_buf.GetDeviceBuffer()),
                                      M,
                                      N,
                                      K,
                                      StrideA,
                                      StrideB,
Chao Liu's avatar
Chao Liu committed
177
                                      StrideC,
Chao Liu's avatar
Chao Liu committed
178
179
180
                                      a_element_op,
                                      b_element_op,
                                      c_element_op);
181
182
183

    if(!gemm.IsSupportedArgument(argument))
    {
Chao Liu's avatar
Chao Liu committed
184
185
186
        std::cout << gemm.GetTypeString() << " does not support this problem" << std::endl;

        return 0;
187
188
    }

JD's avatar
JD committed
189
    float ave_time = invoker.Run(argument, StreamConfig{nullptr, time_kernel});
190
191
192

    std::size_t flop = std::size_t(2) * M * N * K;
    std::size_t num_btype =
Chao Liu's avatar
Chao Liu committed
193
        sizeof(ADataType) * M * K + sizeof(BDataType) * K * N + sizeof(CDataType) * M * N;
194
195
196
197
198

    float tflops = static_cast<float>(flop) / 1.E9 / ave_time;

    float gb_per_sec = num_btype / 1.E6 / ave_time;

Chao Liu's avatar
Chao Liu committed
199
200
    std::cout << "Perf: " << ave_time << " ms, " << tflops << " TFlops, " << gb_per_sec << " GB/s, "
              << gemm.GetTypeString() << std::endl;
201
202
203
204
205

    c_m_n_device_buf.FromDevice(c_m_n_device_result.mData.data());

    if(do_verification)
    {
Chao Liu's avatar
Chao Liu committed
206
207
208
209
210
211
212
        auto ref_gemm    = ReferenceGemmInstance{};
        auto ref_invoker = ref_gemm.MakeInvoker();

        auto ref_argument = ref_gemm.MakeArgument(
            a_m_k, b_k_n, c_m_n_host_result, a_element_op, b_element_op, c_element_op);

        ref_invoker.Run(ref_argument);
213

Anthony Chang's avatar
Anthony Chang committed
214
        return ck::utils::check_err(c_m_n_device_result.mData, c_m_n_host_result.mData) ? 0 : 1;
215
    }
Jianfeng Yan's avatar
Jianfeng Yan committed
216
217

    return 0;
218
}