layernorm_blockwise.cpp 6.05 KB
Newer Older
rocking5566's avatar
rocking5566 committed
1
2
3
4
5
6
7
8
9
10
11
// SPDX-License-Identifier: MIT
// Copyright (c) 2018-2022, Advanced Micro Devices, Inc. All rights reserved.

#include <iostream>
#include <numeric>
#include <initializer_list>
#include <cstdlib>
#include <getopt.h>

#include "ck/ck.hpp"
#include "ck/utility/reduction_enums.hpp"
12
#include "ck/tensor_operation/gpu/device/impl/device_normalization_impl.hpp"
rocking5566's avatar
rocking5566 committed
13
14
15
#include "ck/tensor_operation/gpu/device/reduction_operator_mapping.hpp"

#include "ck/library/utility/check_err.hpp"
16
17
18
19
#include "ck/library/utility/device_memory.hpp"
#include "ck/library/utility/host_common_util.hpp"
#include "ck/library/utility/host_tensor.hpp"
#include "ck/library/utility/host_tensor_generator.hpp"
20
#include "ck/library/utility/literals.hpp"
rocking5566's avatar
rocking5566 committed
21
22
23
24
25
26
27
28
29
30
31
32
#include "ck/library/reference_tensor_operation/cpu/reference_layernorm.hpp"

using XDataType     = ck::half_t;
using GammaDataType = ck::half_t;
using BetaDataType  = ck::half_t;
using YDataType     = ck::half_t;
using AccDataType   = float;
using PassThrough   = ck::tensor_operation::element_wise::PassThrough;

constexpr int Rank         = 2;
constexpr int NumReduceDim = 1;

rocking5566's avatar
rocking5566 committed
33
using DeviceInstance =
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
    ck::tensor_operation::device::DeviceNormalizationImpl<XDataType,
                                                          GammaDataType,
                                                          BetaDataType,
                                                          AccDataType,
                                                          YDataType,
                                                          PassThrough,
                                                          Rank,
                                                          NumReduceDim,
                                                          256, // BlockSize
                                                          8,   // ClusterM
                                                          32,  // ClusterK
                                                          1,   // SliceM
                                                          8,   // SliceK
                                                          1,   // SrcVecDim (0=M, 1=K)
                                                          8,   // SrcScalarPerVector
                                                          1,   // GammaVecDim (0=M, 1=K)
                                                          8,   // GammaScalarPerVector
                                                          1,   // BetaVecDim (0=M, 1=K)
                                                          8,   // BetaScalarPerVector
                                                          8>;  // OutScalarPerVector
rocking5566's avatar
rocking5566 committed
54
55
56
57
58
59
60
61
62
63

int main()
{
    bool time_kernel = false;

    ck::index_t M      = 1024;
    ck::index_t N      = 1024;
    ck::index_t Stride = N;

    auto f_host_tensor_descriptor1d = [](std::size_t len, std::size_t stride) {
64
        return HostTensorDescriptor({len}, {stride});
rocking5566's avatar
rocking5566 committed
65
66
67
    };

    auto f_host_tensor_descriptor2d = [](std::size_t row, std::size_t col, std::size_t stride) {
68
69
70
        using namespace ck::literals;

        return HostTensorDescriptor({row, col}, {stride, 1_uz});
rocking5566's avatar
rocking5566 committed
71
72
73
74
75
76
77
78
79
80
81
    };

    Tensor<XDataType> x(f_host_tensor_descriptor2d(M, N, Stride));
    Tensor<GammaDataType> gamma(f_host_tensor_descriptor1d(N, 1));
    Tensor<BetaDataType> beta(f_host_tensor_descriptor1d(N, 1));
    Tensor<YDataType> y(f_host_tensor_descriptor2d(M, N, Stride));

    x.GenerateTensorValue(GeneratorTensor_3<XDataType>{0.0, 1.0});
    gamma.GenerateTensorValue(GeneratorTensor_3<GammaDataType>{0.0, 1.0});
    beta.GenerateTensorValue(GeneratorTensor_3<BetaDataType>{0.0, 1.0});

82
83
84
85
    DeviceMem x_dev(sizeof(XDataType) * x.mDesc.GetElementSpaceSize());
    DeviceMem gamma_dev(sizeof(GammaDataType) * gamma.mDesc.GetElementSpaceSize());
    DeviceMem beta_dev(sizeof(BetaDataType) * beta.mDesc.GetElementSpaceSize());
    DeviceMem y_dev(sizeof(YDataType) * y.mDesc.GetElementSpaceSize());
rocking5566's avatar
rocking5566 committed
86
87
88
89
90
91
92
93
94

    x_dev.ToDevice(x.mData.data());
    gamma_dev.ToDevice(gamma.mData.data());
    beta_dev.ToDevice(beta.mData.data());

    auto device_instance = DeviceInstance{};
    auto argument_ptr    = device_instance.MakeArgumentPointer(
        {M, N},
        std::vector<ck::index_t>{x.mDesc.GetStrides().begin(), x.mDesc.GetStrides().end()},
rocking5566's avatar
rocking5566 committed
95
96
        {0, 1},
        {0, 1},
rocking5566's avatar
rocking5566 committed
97
        std::vector<ck::index_t>{y.mDesc.GetStrides().begin(), y.mDesc.GetStrides().end()},
rocking5566's avatar
rocking5566 committed
98
99
100
101
102
103
        {1},
        1e-4,
        x_dev.GetDeviceBuffer(),
        gamma_dev.GetDeviceBuffer(),
        beta_dev.GetDeviceBuffer(),
        y_dev.GetDeviceBuffer(),
104
105
        nullptr,
        nullptr,
rocking5566's avatar
rocking5566 committed
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
        PassThrough{});

    if(!device_instance.IsSupportedArgument(argument_ptr.get()))
    {
        std::cout << "The runtime parameters are not supported" << std::endl;
        return 1;
    };

    auto invoker_ptr = device_instance.MakeInvokerPointer();
    invoker_ptr->Run(argument_ptr.get(), StreamConfig{nullptr, time_kernel});

    bool pass = true;
    {
        Tensor<YDataType> host_y(f_host_tensor_descriptor2d(M, N, Stride));
        using ReferenceInstance = ck::tensor_operation::host::ReferenceLayernorm<XDataType,
                                                                                 GammaDataType,
                                                                                 BetaDataType,
                                                                                 YDataType,
                                                                                 AccDataType,
                                                                                 PassThrough,
                                                                                 Rank,
                                                                                 NumReduceDim>;

        ReferenceInstance ref;
        auto ref_argument =
            ref.MakeArgument(x, gamma, beta, host_y, PassThrough{}, {M, N}, {1}, 1e-4);
        auto ref_invoker = ref.MakeInvoker();
        ref_invoker.Run(ref_argument);

        y_dev.FromDevice(y.mData.data());
136
        pass &= ck::utils::check_err(y, host_y, "Error: Incorrect results d1", 1e-3, 1e-3);
rocking5566's avatar
rocking5566 committed
137
138
139
    }
    return (pass ? 0 : 1);
}