contraction_xdl_fp32.cpp 27.1 KB
Newer Older
Chao Liu's avatar
Chao Liu committed
1
#include <iostream>
2
#include <fstream>
Chao Liu's avatar
Chao Liu committed
3
4
5
6
7
8
9
10
11
12
#include <numeric>
#include <initializer_list>
#include <cstdlib>
#include <stdlib.h>
#include "check_err.hpp"
#include "config.hpp"
#include "device.hpp"
#include "host_tensor.hpp"
#include "host_tensor_generator.hpp"
#include "device_tensor.hpp"
Chao Liu's avatar
Chao Liu committed
13
#include "device_contraction_xdl_cshuffle.hpp"
Chao Liu's avatar
Chao Liu committed
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
#include "element_wise_operation.hpp"
#include "reference_gemm.hpp"
#include "gemm_specialization.hpp"

template <ck::index_t... Is>
using S = ck::Sequence<Is...>;

using F32 = float;

using Row = ck::tensor_layout::gemm::RowMajor;
using Col = ck::tensor_layout::gemm::ColumnMajor;

using PassThrough = ck::tensor_operation::element_wise::PassThrough;

using ADataType   = float;
using BDataType   = float;
using CDataType   = float;
using AccDataType = float;

Chao Liu's avatar
Chao Liu committed
33
34
35
static constexpr ck::index_t NumDimM = 2;
static constexpr ck::index_t NumDimN = 2;
static constexpr ck::index_t NumDimK = 2;
Chao Liu's avatar
Chao Liu committed
36
37
38
39
40

using AElementOp = ck::tensor_operation::element_wise::PassThrough;
using BElementOp = ck::tensor_operation::element_wise::PassThrough;
using CElementOp = ck::tensor_operation::element_wise::PassThrough;

41
42
//static constexpr auto GemmDefault = ck::tensor_operation::device::GemmSpecialization::Default;
static constexpr auto GemmDefault = ck::tensor_operation::device::GemmSpecialization::MNKPadding;
Chao Liu's avatar
Chao Liu committed
43
44

// clang-format off
Chao Liu's avatar
Chao Liu committed
45
46
// Fast changing dimension in A/B/C are K/N/N dimensions
using ContractionInstanceKNN = ck::tensor_operation::device::
Chao Liu's avatar
Chao Liu committed
47
48
49
50
        //############################| NumDimM| NumDimN| NumDimK| AData| BData| CData| AccData| CShuffle|           A|           B|           C|           GEMM| NumGemmK| Block|  MPer|  NPer|  KPer| AK1| BK1| MPer| NPer| MXdl| NXdl|  ABlockTransfer| ABlockTransfer| ABlockTransfer| ABlockTransfer| ABlockTransfer| ABlockTransfer| ABlockLds|  BBlockTransfer| BBlockTransfer| BBlockTransfer| BlockTransfer| BBlockTransfer| BBlockTransfer| BBlockLds|    CShuffle|    CShuffle| CBlockTransferClusterLengths|  CBlockTransfer|
        //############################|        |        |        |  Type|  Type|  Type|    Type| DataType| Elementwise| Elementwise| Elementwise| Spacialization| Prefetch|  Size| Block| Block| Block|    |    |  XDL|  XDL|  Per|  Per|   ThreadCluster|  ThreadCluster| SrcAccessOrder|   SrcVectorDim|      SrcScalar|      DstScalar| AddExtraM|   ThreadCluster|  ThreadCluster| SrcAccessOrder|  SrcVectorDim|      SrcScalar|      DstScalar| AddExtraN| MXdlPerWave| NXdlPerWave|         _MBlock_MWaveMPerXdl| ScalarPerVector|
        //############################|        |        |        |      |      |      |        |         |   Operation|   Operation|   Operation|               |    Stage|      |      |      |      |    |    |     |     | Wave| Wave| Lengths_K0_M_K1|   ArrangeOrder|               |               |      PerVector|   PerVector_K1|          | Lengths_K0_N_K1|   ArrangeOrder|               |              |      PerVector|   PerVector_K1|          |  PerShuffle|  PerShuffle|         _NBlock_NWaveNPerXdl|   _NWaveNPerXdl|
        //############################|        |        |        |      |      |      |        |         |            |            |            |               |         |      |      |      |      |    |    |     |     |     |     |                |               |               |               |               |               |          |                |               |               |              |               |               |          |            |            |                             |                |
Chao Liu's avatar
Chao Liu committed
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
        DeviceContraction_Xdl_CShuffle< NumDimM, NumDimN, NumDimK,   F32,   F32,   F32,     F32,      F32, PassThrough, PassThrough, PassThrough,    GemmDefault,        1,   256,   256,   128,    16,   4,   1,   32,   32,    4,    2,     S<4, 64, 1>,     S<1, 0, 2>,     S<1, 0, 2>,              2,              4,              4,         1,     S<8, 32, 1>,     S<0, 2, 1>,     S<0, 2, 1>,             1,              4,              1,         0,           1,           1,              S<1, 16, 1, 16>,               4>;

// Fast changing dimension in A/B/C are K/K/N dimensions
using ContractionInstanceKKN = ck::tensor_operation::device::
        //############################| NumDimM| NumDimN| NumDimK| AData| BData| CData| AccData| CShuffle|           A|           B|           C|           GEMM| NumGemmK| Block|  MPer|  NPer|  KPer| AK1| BK1| MPer| NPer| MXdl| NXdl|  ABlockTransfer| ABlockTransfer| ABlockTransfer| ABlockTransfer| ABlockTransfer| ABlockTransfer| ABlockLds|  BBlockTransfer| BBlockTransfer| BBlockTransfer| BlockTransfer| BBlockTransfer| BBlockTransfer| BBlockLds|    CShuffle|    CShuffle| CBlockTransferClusterLengths|  CBlockTransfer|
        //############################|        |        |        |  Type|  Type|  Type|    Type| DataType| Elementwise| Elementwise| Elementwise| Spacialization| Prefetch|  Size| Block| Block| Block|    |    |  XDL|  XDL|  Per|  Per|   ThreadCluster|  ThreadCluster| SrcAccessOrder|   SrcVectorDim|      SrcScalar|      DstScalar| AddExtraM|   ThreadCluster|  ThreadCluster| SrcAccessOrder|  SrcVectorDim|      SrcScalar|      DstScalar| AddExtraN| MXdlPerWave| NXdlPerWave|         _MBlock_MWaveMPerXdl| ScalarPerVector|
        //############################|        |        |        |      |      |      |        |         |   Operation|   Operation|   Operation|               |    Stage|      |      |      |      |    |    |     |     | Wave| Wave| Lengths_K0_M_K1|   ArrangeOrder|               |               |      PerVector|   PerVector_K1|          | Lengths_K0_N_K1|   ArrangeOrder|               |              |      PerVector|   PerVector_K1|          |  PerShuffle|  PerShuffle|         _NBlock_NWaveNPerXdl|   _NWaveNPerXdl|
        //############################|        |        |        |      |      |      |        |         |            |            |            |               |         |      |      |      |      |    |    |     |     |     |     |                |               |               |               |               |               |          |                |               |               |              |               |               |          |            |            |                             |                |
        DeviceContraction_Xdl_CShuffle< NumDimM, NumDimN, NumDimK,   F32,   F32,   F32,     F32,      F32, PassThrough, PassThrough, PassThrough,    GemmDefault,        1,   256,   256,   128,    16,   4,   4,   32,   32,    4,    2,     S<4, 64, 1>,     S<1, 0, 2>,     S<1, 0, 2>,              2,              4,              4,         1,     S<4, 64, 1>,     S<1, 0, 2>,     S<1, 0, 2>,             2,              4,              4,         1,           1,           1,              S<1, 16, 1, 16>,               4>;

// Fast changing dimension in A/B/C are M/N/N dimensions
using ContractionInstanceMNN = ck::tensor_operation::device::
        //############################| NumDimM| NumDimN| NumDimK| AData| BData| CData| AccData| CShuffle|           A|           B|           C|           GEMM| NumGemmK| Block|  MPer|  NPer|  KPer| AK1| BK1| MPer| NPer| MXdl| NXdl|  ABlockTransfer| ABlockTransfer| ABlockTransfer| ABlockTransfer| ABlockTransfer| ABlockTransfer| ABlockLds|  BBlockTransfer| BBlockTransfer| BBlockTransfer| BlockTransfer| BBlockTransfer| BBlockTransfer| BBlockLds|    CShuffle|    CShuffle| CBlockTransferClusterLengths|  CBlockTransfer|
        //############################|        |        |        |  Type|  Type|  Type|    Type| DataType| Elementwise| Elementwise| Elementwise| Spacialization| Prefetch|  Size| Block| Block| Block|    |    |  XDL|  XDL|  Per|  Per|   ThreadCluster|  ThreadCluster| SrcAccessOrder|   SrcVectorDim|      SrcScalar|      DstScalar| AddExtraM|   ThreadCluster|  ThreadCluster| SrcAccessOrder|  SrcVectorDim|      SrcScalar|      DstScalar| AddExtraN| MXdlPerWave| NXdlPerWave|         _MBlock_MWaveMPerXdl| ScalarPerVector|
        //############################|        |        |        |      |      |      |        |         |   Operation|   Operation|   Operation|               |    Stage|      |      |      |      |    |    |     |     | Wave| Wave| Lengths_K0_M_K1|   ArrangeOrder|               |               |      PerVector|   PerVector_K1|          | Lengths_K0_N_K1|   ArrangeOrder|               |              |      PerVector|   PerVector_K1|          |  PerShuffle|  PerShuffle|         _NBlock_NWaveNPerXdl|   _NWaveNPerXdl|
        //############################|        |        |        |      |      |      |        |         |            |            |            |               |         |      |      |      |      |    |    |     |     |     |     |                |               |               |               |               |               |          |                |               |               |              |               |               |          |            |            |                             |                |
        DeviceContraction_Xdl_CShuffle< NumDimM, NumDimN, NumDimK,   F32,   F32,   F32,     F32,      F32, PassThrough, PassThrough, PassThrough,    GemmDefault,        1,   256,   256,   128,    16,   1,   1,   32,   32,    4,    2,     S<4, 64, 1>,     S<0, 2, 1>,     S<0, 2, 1>,              1,              4,              1,         0,     S<8, 32, 1>,     S<0, 2, 1>,     S<0, 2, 1>,             1,              4,              1,         0,           1,           1,              S<1, 16, 1, 16>,               4>;

// Fast changing dimension in A/B/C are M/K/N dimensions
using ContractionInstanceMKN = ck::tensor_operation::device::
        //############################| NumDimM| NumDimN| NumDimK| AData| BData| CData| AccData| CShuffle|           A|           B|           C|           GEMM| NumGemmK| Block|  MPer|  NPer|  KPer| AK1| BK1| MPer| NPer| MXdl| NXdl|  ABlockTransfer| ABlockTransfer| ABlockTransfer| ABlockTransfer| ABlockTransfer| ABlockTransfer| ABlockLds|  BBlockTransfer| BBlockTransfer| BBlockTransfer| BlockTransfer| BBlockTransfer| BBlockTransfer| BBlockLds|    CShuffle|    CShuffle| CBlockTransferClusterLengths|  CBlockTransfer|
        //############################|        |        |        |  Type|  Type|  Type|    Type| DataType| Elementwise| Elementwise| Elementwise| Spacialization| Prefetch|  Size| Block| Block| Block|    |    |  XDL|  XDL|  Per|  Per|   ThreadCluster|  ThreadCluster| SrcAccessOrder|   SrcVectorDim|      SrcScalar|      DstScalar| AddExtraM|   ThreadCluster|  ThreadCluster| SrcAccessOrder|  SrcVectorDim|      SrcScalar|      DstScalar| AddExtraN| MXdlPerWave| NXdlPerWave|         _MBlock_MWaveMPerXdl| ScalarPerVector|
        //############################|        |        |        |      |      |      |        |         |   Operation|   Operation|   Operation|               |    Stage|      |      |      |      |    |    |     |     | Wave| Wave| Lengths_K0_M_K1|   ArrangeOrder|               |               |      PerVector|   PerVector_K1|          | Lengths_K0_N_K1|   ArrangeOrder|               |              |      PerVector|   PerVector_K1|          |  PerShuffle|  PerShuffle|         _NBlock_NWaveNPerXdl|   _NWaveNPerXdl|
        //############################|        |        |        |      |      |      |        |         |            |            |            |               |         |      |      |      |      |    |    |     |     |     |     |                |               |               |               |               |               |          |                |               |               |              |               |               |          |            |            |                             |                |
        DeviceContraction_Xdl_CShuffle< NumDimM, NumDimN, NumDimK,   F32,   F32,   F32,     F32,      F32, PassThrough, PassThrough, PassThrough,    GemmDefault,        1,   256,   256,   128,    16,   1,   4,   32,   32,    4,    2,     S<4, 64, 1>,     S<0, 2, 1>,     S<0, 2, 1>,              1,              4,              1,         0,     S<4, 64, 1>,     S<1, 0, 2>,     S<1, 0, 2>,             2,              4,              4,         1,           1,           1,               S<1, 16, 1, 16>,              4>;
Chao Liu's avatar
Chao Liu committed
76
77
// clang-format on

Chao Liu's avatar
Chao Liu committed
78
using ContractionInstance = ContractionInstanceMKN;
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95

template <typename T, typename Range>
void LogRangeToFile(std::ofstream& fs, Range&& range, std::string delim)
{
    bool first = true;
    for(auto&& v : range)
    {
        if(first)
            first = false;
        else
            fs << delim;
        fs << static_cast<T>(v);
    }
    return;
}


Chao Liu's avatar
Chao Liu committed
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
// hardcoded for NumDimM == NumDimN == NumDimK == 2
template <ck::index_t NumDimM,
          ck::index_t NumDimN,
          ck::index_t NumDimK,
          typename ADataType,
          typename BDataType,
          typename CDataType,
          typename AccDataType,
          typename AElementwiseOperation,
          typename BElementwiseOperation,
          typename CElementwiseOperation,
          ck::enable_if_t<NumDimM == 2 && NumDimN == 2 && NumDimK == 2, bool> = false>
struct ReferenceContraction_M2_N2_K2 : public ck::tensor_operation::device::BaseOperator
{
    // Argument
    struct Argument : public ck::tensor_operation::device::BaseArgument
    {
        Argument(const Tensor<ADataType>& a_ms_ks,
                 const Tensor<BDataType>& b_ks_ns,
                 Tensor<CDataType>& c_ms_ns,
                 AElementwiseOperation a_element_op,
                 BElementwiseOperation b_element_op,
                 CElementwiseOperation c_element_op)
            : a_ms_ks_{a_ms_ks},
              b_ks_ns_{b_ks_ns},
              c_ms_ns_{c_ms_ns},
              a_element_op_{a_element_op},
              b_element_op_{b_element_op},
              c_element_op_{c_element_op}
        {
        }

        const Tensor<ADataType>& a_ms_ks_;
        const Tensor<BDataType>& b_ks_ns_;
        Tensor<CDataType>& c_ms_ns_;

        AElementwiseOperation a_element_op_;
        BElementwiseOperation b_element_op_;
        CElementwiseOperation c_element_op_;
    };

    // Invoker
    struct Invoker : public ck::tensor_operation::device::BaseInvoker
    {
        using Argument = ReferenceContraction_M2_N2_K2::Argument;

        float Run(const Argument& arg)
        {
            auto f_ms_ns = [&](auto m0, auto m1, auto n0, auto n1) {
                const int K0 = arg.a_ms_ks_.mDesc.GetLengths()[2];
                const int K1 = arg.a_ms_ks_.mDesc.GetLengths()[3];

                AccDataType v_acc = 0;

                for(int k0 = 0; k0 < K0; ++k0)
                {
                    for(int k1 = 0; k1 < K1; ++k1)
                    {
                        AccDataType v_a;
                        AccDataType v_b;

                        arg.a_element_op_(
                            v_a, static_cast<const AccDataType>(arg.a_ms_ks_(m0, m1, k0, k1)));
                        arg.b_element_op_(
                            v_b, static_cast<const AccDataType>(arg.b_ks_ns_(k0, k1, n0, n1)));

                        v_acc += v_a * v_b;
                    }
                }

                AccDataType v_c;

                arg.c_element_op_(v_c, v_acc);

                arg.c_ms_ns_(m0, m1, n0, n1) = v_c;
            };

            make_ParallelTensorFunctor(f_ms_ns,
                                       arg.c_ms_ns_.mDesc.GetLengths()[0],
                                       arg.c_ms_ns_.mDesc.GetLengths()[1],
                                       arg.c_ms_ns_.mDesc.GetLengths()[2],
                                       arg.c_ms_ns_.mDesc.GetLengths()[3])(
                std::thread::hardware_concurrency());

            return 0;
        }

        float Run(const ck::tensor_operation::device::BaseArgument* p_arg,
                  const StreamConfig& /* stream_config */ = StreamConfig{}) override
        {
            return Run(*dynamic_cast<const Argument*>(p_arg));
        }
    };

    static constexpr bool IsValidCompilationParameter()
    {
        // TODO: properly implement this check
        return true;
    }

    bool IsSupportedArgument(const ck::tensor_operation::device::BaseArgument*) override
    {
        return true;
    }

    static auto MakeArgument(const Tensor<ADataType>& a_ms_ks,
                             const Tensor<BDataType>& b_ks_ns,
                             Tensor<CDataType>& c_ms_ns,
                             AElementwiseOperation a_element_op,
                             BElementwiseOperation b_element_op,
                             CElementwiseOperation c_element_op)
    {
        return Argument{a_ms_ks, b_ks_ns, c_ms_ns, a_element_op, b_element_op, c_element_op};
    }

    static auto MakeInvoker() { return Invoker{}; }

    virtual std::unique_ptr<ck::tensor_operation::device::BaseInvoker> MakeInvokerPointer()
    {
        return std::make_unique<Invoker>(Invoker{});
    }

    std::string GetTypeString() const override
    {
        auto str = std::stringstream();

        // clang-format off
        str << "ReferenceContraction_M2_N2_K2"
            << std::endl;
        // clang-format on

        return str.str();
    }
};

using ReferenceOpInstance = ReferenceContraction_M2_N2_K2<NumDimM,
                                                          NumDimN,
                                                          NumDimK,
                                                          ADataType,
                                                          BDataType,
                                                          CDataType,
                                                          AccDataType,
                                                          AElementOp,
                                                          BElementOp,
                                                          CElementOp>;
Chao Liu's avatar
Chao Liu committed
241
242
243
244

int main(int argc, char* argv[])
{
    bool do_verification = true;
245
    int init_method      = 3;
Chao Liu's avatar
Chao Liu committed
246
247
248
249
250
251
252
253
254
255
256
    bool time_kernel     = false;

    if(argc == 4)
    {
        do_verification = std::stoi(argv[1]);
        init_method     = std::stoi(argv[2]);
        time_kernel     = std::stoi(argv[3]);
    }
    else
    {
        printf("arg1: verification (0=no, 1=yes)\n");
257
        printf("arg2: initialization (0=no init, 1=integer value, 2=decimal value, 3=cutensor_style_init)\n");
Chao Liu's avatar
Chao Liu committed
258
        printf("arg3: time kernel (0=no, 1=yes)\n");
Chao Liu's avatar
Chao Liu committed
259
260
261
        exit(0);
    }

262
263
264
265
266
267
268
269
270
    std::ofstream tensorA;
    std::ofstream tensorB;
    std::ofstream tensorC;
    std::ofstream tensorC_d;
    std::cout << "RAND_MAX value is " << RAND_MAX << std::endl;

    

#if 0
Chao Liu's avatar
Chao Liu committed
271
    // fast changing dimension: K/K/N
272
    // a[m0, m1, k0, k1]
Chao Liu's avatar
format  
Chao Liu committed
273
    std::vector<ck::index_t> a_ms_ks_lengths{30, 128, 32, 64};
274
275
    //std::vector<ck::index_t> a_ms_ks_strides{524288, 4096, 128, 1};
    // b[k0, k1, n0, n1]
Chao Liu's avatar
format  
Chao Liu committed
276
    std::vector<ck::index_t> b_ks_ns_lengths{32, 64, 32, 64};
277
278
    //std::vector<ck::index_t> b_ks_ns_strides{128, 1, 524288, 4096};
    // c[m0, m1, n0, n1]
Chao Liu's avatar
format  
Chao Liu committed
279
    std::vector<ck::index_t> c_ms_ns_lengths{30, 128, 32, 64};
280
    //std::vector<ck::index_t> c_ms_ns_strides{524288, 4096, 128, 1};
Chao Liu's avatar
Chao Liu committed
281
282
#elif 0
    // fast changing dimension: K/N/N
283
284
    // a[m0, m1, k0, k1]
    std::vector<ck::index_t> a_ms_ks_lengths{5,6,3,4};
Chao Liu's avatar
Chao Liu committed
285
    std::vector<ck::index_t> a_ms_ks_strides{108,20,16,1};
286
287
    // b[k0, k1, n0, n1]
    std::vector<ck::index_t> b_ks_ns_lengths{3,4,3,4};
Chao Liu's avatar
Chao Liu committed
288
    std::vector<ck::index_t> b_ks_ns_strides{48,12,4,1};
289
290
    // c[m0, m1, n0, n1]
    std::vector<ck::index_t> c_ms_ns_lengths{5,6,3,4};
Chao Liu's avatar
Chao Liu committed
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
    std::vector<ck::index_t> c_ms_ns_strides{108,20,16,1};
#elif 0
    // fast changing dimension: K/K/N
    // a[m0, m1, k0, k1]
    std::vector<ck::index_t> a_ms_ks_lengths{5,6,3,4};
    std::vector<ck::index_t> a_ms_ks_strides{108,20,16,1};
    // b[k0, k1, n0, n1]
    std::vector<ck::index_t> b_ks_ns_lengths{3,4,3,4};
    std::vector<ck::index_t> b_ks_ns_strides{16,1,108,20};
    // c[m0, m1, n0, n1]
    std::vector<ck::index_t> c_ms_ns_lengths{5,6,3,4};
    std::vector<ck::index_t> c_ms_ns_strides{108,20,16,1};
#elif 0
    // fast changing dimension: M/N/N
    // a[m0, m1, k0, k1]
    std::vector<ck::index_t> a_ms_ks_lengths{5,6,3,4};
    std::vector<ck::index_t> a_ms_ks_strides{6,1,72,24};
    // b[k0, k1, n0, n1]
    std::vector<ck::index_t> b_ks_ns_lengths{3,4,3,4};
    std::vector<ck::index_t> b_ks_ns_strides{48,12,4,1};
    // c[m0, m1, n0, n1]
    std::vector<ck::index_t> c_ms_ns_lengths{5,6,3,4};
    std::vector<ck::index_t> c_ms_ns_strides{108,20,16,1};
#elif 1
    // fast changing dimension: M/K/N
    // a[m0, m1, k0, k1]
    std::vector<ck::index_t> a_ms_ks_lengths{5,6,3,4};
    std::vector<ck::index_t> a_ms_ks_strides{6,1,72,24};
    // b[k0, k1, n0, n1]
    std::vector<ck::index_t> b_ks_ns_lengths{3,4,3,4};
    std::vector<ck::index_t> b_ks_ns_strides{16,1,108,20};
    // c[m0, m1, n0, n1]
    std::vector<ck::index_t> c_ms_ns_lengths{5,6,3,4};
    std::vector<ck::index_t> c_ms_ns_strides{108,20,16,1};
325
326
#endif

Chao Liu's avatar
Chao Liu committed
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
    Tensor<ADataType> a_ms_ks(
        std::vector<std::size_t>(a_ms_ks_lengths.begin(), a_ms_ks_lengths.end()),
        std::vector<std::size_t>(a_ms_ks_strides.begin(), a_ms_ks_strides.end()));
    Tensor<BDataType> b_ks_ns(
        std::vector<std::size_t>(b_ks_ns_lengths.begin(), b_ks_ns_lengths.end()),
        std::vector<std::size_t>(b_ks_ns_strides.begin(), b_ks_ns_strides.end()));
    Tensor<CDataType> c_ms_ns_host_result(
        std::vector<std::size_t>(c_ms_ns_lengths.begin(), c_ms_ns_lengths.end()),
        std::vector<std::size_t>(c_ms_ns_strides.begin(), c_ms_ns_strides.end()));
    Tensor<CDataType> c_ms_ns_device_result(
        std::vector<std::size_t>(c_ms_ns_lengths.begin(), c_ms_ns_lengths.end()),
        std::vector<std::size_t>(c_ms_ns_strides.begin(), c_ms_ns_strides.end()));

    std::cout << "a_ms_ks: " << a_ms_ks.mDesc << std::endl;
    std::cout << "b_ks_ns: " << b_ks_ns.mDesc << std::endl;
    std::cout << "c_ms_ns: " << c_ms_ns_host_result.mDesc << std::endl;
Chao Liu's avatar
Chao Liu committed
343
344
345
346
347

    switch(init_method)
    {
    case 0: break;
    case 1:
Chao Liu's avatar
Chao Liu committed
348
349
        a_ms_ks.GenerateTensorValue(GeneratorTensor_2<ADataType>{-5, 5});
        b_ks_ns.GenerateTensorValue(GeneratorTensor_2<BDataType>{-5, 5});
Chao Liu's avatar
Chao Liu committed
350
351
        break;
    case 2:
Chao Liu's avatar
Chao Liu committed
352
353
        a_ms_ks.GenerateTensorValue(GeneratorTensor_3<ADataType>{0.0, 1.0});
        b_ks_ns.GenerateTensorValue(GeneratorTensor_3<BDataType>{-0.5, 0.5});
Chao Liu's avatar
Chao Liu committed
354
        break;
355
356
357
358
    case 3:
        a_ms_ks.GenerateTensorValue(GeneratorTensor_cuTensor<ADataType>{});
        b_ks_ns.GenerateTensorValue(GeneratorTensor_cuTensor<BDataType>{});
        break;
Chao Liu's avatar
Chao Liu committed
359
    default:
Chao Liu's avatar
Chao Liu committed
360
361
        a_ms_ks.GenerateTensorValue(GeneratorTensor_Sequential<0>{});
        b_ks_ns.GenerateTensorValue(GeneratorTensor_Sequential<1>{});
Chao Liu's avatar
Chao Liu committed
362
363
    }

Chao Liu's avatar
Chao Liu committed
364
365
366
367
    DeviceMem a_ms_ks_device_buf(sizeof(ADataType) * a_ms_ks.mDesc.GetElementSpace());
    DeviceMem b_ks_ns_device_buf(sizeof(BDataType) * b_ks_ns.mDesc.GetElementSpace());
    DeviceMem c_ms_ns_device_buf(sizeof(CDataType) * c_ms_ns_device_result.mDesc.GetElementSpace());

368
369
370
371
    std::cout << "Tensor A element space: " << a_ms_ks.mDesc.GetElementSpace() << std::endl;
    std::cout << "Tensor B element space: " << b_ks_ns.mDesc.GetElementSpace() << std::endl;
    std::cout << "Tensor C element space: " <<  c_ms_ns_device_result.mDesc.GetElementSpace() << std::endl;

Chao Liu's avatar
Chao Liu committed
372
373
    a_ms_ks_device_buf.ToDevice(a_ms_ks.mData.data());
    b_ks_ns_device_buf.ToDevice(b_ks_ns.mData.data());
Chao Liu's avatar
Chao Liu committed
374

Chao Liu's avatar
Chao Liu committed
375
376
    // set zero
    c_ms_ns_device_buf.SetZero();
Chao Liu's avatar
Chao Liu committed
377
378
379
380
381

    auto a_element_op = AElementOp{};
    auto b_element_op = BElementOp{};
    auto c_element_op = CElementOp{};

Chao Liu's avatar
Chao Liu committed
382
    // device operation
Chao Liu's avatar
Chao Liu committed
383
    auto op       = ContractionInstance{};
Chao Liu's avatar
Chao Liu committed
384
385
386
387
388
    auto invoker  = op.MakeInvoker();
    auto argument = op.MakeArgument(static_cast<ADataType*>(a_ms_ks_device_buf.GetDeviceBuffer()),
                                    static_cast<BDataType*>(b_ks_ns_device_buf.GetDeviceBuffer()),
                                    static_cast<CDataType*>(c_ms_ns_device_buf.GetDeviceBuffer()),
                                    a_ms_ks_lengths,
389
                                    std::vector<ck::index_t>(a_ms_ks.mDesc.mStrides.begin(), a_ms_ks.mDesc.mStrides.end()),
Chao Liu's avatar
Chao Liu committed
390
                                    b_ks_ns_lengths,
391
				    std::vector<ck::index_t>(b_ks_ns.mDesc.mStrides.begin(), b_ks_ns.mDesc.mStrides.end()),
Chao Liu's avatar
Chao Liu committed
392
                                    c_ms_ns_lengths,
393
                                    std::vector<ck::index_t>(c_ms_ns_host_result.mDesc.mStrides.begin(), c_ms_ns_host_result.mDesc.mStrides.end()),
Chao Liu's avatar
Chao Liu committed
394
395
396
397
398
                                    a_element_op,
                                    b_element_op,
                                    c_element_op);

    if(!op.IsSupportedArgument(argument))
Chao Liu's avatar
Chao Liu committed
399
    {
Chao Liu's avatar
Chao Liu committed
400
        std::cout << op.GetTypeString() << " does not support this problem" << std::endl;
Chao Liu's avatar
Chao Liu committed
401
402
403
404
405
406

        return 0;
    }

    float ave_time = invoker.Run(argument, StreamConfig{nullptr, time_kernel});

Chao Liu's avatar
Chao Liu committed
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
    ck::index_t M = std::accumulate(c_ms_ns_lengths.begin(),
                                    c_ms_ns_lengths.begin() + NumDimM,
                                    ck::index_t{1},
                                    std::multiplies<ck::index_t>{});

    ck::index_t N = std::accumulate(c_ms_ns_lengths.begin() + NumDimM,
                                    c_ms_ns_lengths.begin() + NumDimM + NumDimN,
                                    ck::index_t{1},
                                    std::multiplies<ck::index_t>{});

    ck::index_t K = std::accumulate(a_ms_ks_lengths.begin() + NumDimM,
                                    a_ms_ks_lengths.begin() + NumDimM + NumDimK,
                                    ck::index_t{1},
                                    std::multiplies<ck::index_t>{});

Chao Liu's avatar
Chao Liu committed
422
423
424
425
426
427
428
429
430
    std::size_t flop = std::size_t(2) * M * N * K;
    std::size_t num_btype =
        sizeof(ADataType) * M * K + sizeof(BDataType) * K * N + sizeof(CDataType) * M * N;

    float tflops = static_cast<float>(flop) / 1.E9 / ave_time;

    float gb_per_sec = num_btype / 1.E6 / ave_time;

    std::cout << "Perf: " << ave_time << " ms, " << tflops << " TFlops, " << gb_per_sec << " GB/s, "
Chao Liu's avatar
Chao Liu committed
431
              << op.GetTypeString() << std::endl;
Chao Liu's avatar
Chao Liu committed
432

Chao Liu's avatar
Chao Liu committed
433
    c_ms_ns_device_buf.FromDevice(c_ms_ns_device_result.mData.data());
Chao Liu's avatar
Chao Liu committed
434

435
436
437
438
439
440
441
442
443
444
445
    tensorA.open("tensor_A.txt");
    LogRangeToFile<ADataType>(tensorA, a_ms_ks.mData, ","); 
    LogRangeAsType<ADataType>(std::cout<<"Tensor A elements:\n", a_ms_ks.mData,",");
    std::cout<<std::endl;
    tensorA.close();
    tensorB.open("tensor_B.txt");
    LogRangeToFile<BDataType>(tensorB, b_ks_ns.mData, ","); 
    LogRangeAsType<BDataType>(std::cout<<"Tensor B elements:\n", b_ks_ns.mData,",");
    std::cout<<std::endl;
    tensorB.close();

Chao Liu's avatar
Chao Liu committed
446
447
    if(do_verification)
    {
Chao Liu's avatar
Chao Liu committed
448
        auto ref_gemm    = ReferenceOpInstance{};
Chao Liu's avatar
Chao Liu committed
449
450
451
        auto ref_invoker = ref_gemm.MakeInvoker();

        auto ref_argument = ref_gemm.MakeArgument(
Chao Liu's avatar
Chao Liu committed
452
            a_ms_ks, b_ks_ns, c_ms_ns_host_result, a_element_op, b_element_op, c_element_op);
Chao Liu's avatar
Chao Liu committed
453
454
455

        ref_invoker.Run(ref_argument);

456
457
458
459
460
461
462
463
464
465
466
467
468
	    tensorC.open("tensor_C_contraction_host_results.txt");
    	LogRangeToFile<CDataType>(tensorC, c_ms_ns_host_result.mData, ","); 
    	LogRangeAsType<CDataType>(std::cout<<"Tensor C_host elements:\n", c_ms_ns_host_result.mData, ",");
    	std::cout<<std::endl;
	    tensorC.close();

	    tensorC.open("tensor_C_contraction_device_results.txt");
    	LogRangeToFile<CDataType>(tensorC_d, c_ms_ns_device_result.mData, ","); 
    	LogRangeAsType<CDataType>(std::cout<<"Tensor C_device elements:\n", c_ms_ns_device_result.mData, ",");
    	std::cout<<std::endl;
	    tensorC.close();


Chao Liu's avatar
Chao Liu committed
469
        return ck::utils::check_err(c_ms_ns_device_result.mData, c_ms_ns_host_result.mData) ? 0 : 1;
Chao Liu's avatar
Chao Liu committed
470
471
472
473
    }

    return 0;
}