contraction_xdl_fp32.cpp 18 KB
Newer Older
Chao Liu's avatar
Chao Liu committed
1
#include <iostream>
2
#include <fstream>
Chao Liu's avatar
Chao Liu committed
3
4
5
6
7
8
9
10
11
12
#include <numeric>
#include <initializer_list>
#include <cstdlib>
#include <stdlib.h>
#include "check_err.hpp"
#include "config.hpp"
#include "device.hpp"
#include "host_tensor.hpp"
#include "host_tensor_generator.hpp"
#include "device_tensor.hpp"
Chao Liu's avatar
Chao Liu committed
13
#include "device_contraction_xdl_cshuffle.hpp"
Chao Liu's avatar
Chao Liu committed
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
#include "element_wise_operation.hpp"
#include "reference_gemm.hpp"
#include "gemm_specialization.hpp"

template <ck::index_t... Is>
using S = ck::Sequence<Is...>;

using F32 = float;

using Row = ck::tensor_layout::gemm::RowMajor;
using Col = ck::tensor_layout::gemm::ColumnMajor;

using PassThrough = ck::tensor_operation::element_wise::PassThrough;

using ADataType   = float;
using BDataType   = float;
using CDataType   = float;
using AccDataType = float;

Chao Liu's avatar
Chao Liu committed
33
34
35
static constexpr ck::index_t NumDimM = 2;
static constexpr ck::index_t NumDimN = 2;
static constexpr ck::index_t NumDimK = 2;
Chao Liu's avatar
Chao Liu committed
36
37
38
39
40

using AElementOp = ck::tensor_operation::element_wise::PassThrough;
using BElementOp = ck::tensor_operation::element_wise::PassThrough;
using CElementOp = ck::tensor_operation::element_wise::PassThrough;

41
42
//static constexpr auto GemmDefault = ck::tensor_operation::device::GemmSpecialization::Default;
static constexpr auto GemmDefault = ck::tensor_operation::device::GemmSpecialization::MNKPadding;
Chao Liu's avatar
Chao Liu committed
43
44

// clang-format off
Chao Liu's avatar
Chao Liu committed
45
46
47
48
49
50
using DeviceOpInstance = ck::tensor_operation::device::
        //############################| NumDimM| NumDimN| NumDimK| AData| BData| CData| AccData| CShuffle|           A|           B|           C|           GEMM| NumGemmK| Block|  MPer|  NPer|  KPer| AK1| BK1| MPer| NPer| MXdl| NXdl|  ABlockTransfer| ABlockTransfer| ABlockTransfer| ABlockTransfer| ABlockTransfer| ABlockTransfer| ABlockLds|  BBlockTransfer| BBlockTransfer| BBlockTransfer| BlockTransfer| BBlockTransfer| BBlockTransfer| BBlockLds|    CShuffle|    CShuffle| CBlockTransferClusterLengths|  CBlockTransfer|
        //############################|        |        |        |  Type|  Type|  Type|    Type| DataType| Elementwise| Elementwise| Elementwise| Spacialization| Prefetch|  Size| Block| Block| Block|    |    |  XDL|  XDL|  Per|  Per|   ThreadCluster|  ThreadCluster| SrcAccessOrder|   SrcVectorDim|      SrcScalar|      DstScalar| AddExtraM|   ThreadCluster|  ThreadCluster| SrcAccessOrder|  SrcVectorDim|      SrcScalar|      DstScalar| AddExtraN| MXdlPerWave| NXdlPerWave|         _MBlock_MWaveMPerXdl| ScalarPerVector|
        //############################|        |        |        |      |      |      |        |         |   Operation|   Operation|   Operation|               |    Stage|      |      |      |      |    |    |     |     | Wave| Wave| Lengths_K0_M_K1|   ArrangeOrder|               |               |      PerVector|   PerVector_K1|          | Lengths_K0_N_K1|   ArrangeOrder|               |              |      PerVector|   PerVector_K1|          |  PerShuffle|  PerShuffle|         _NBlock_NWaveNPerXdl|   _NWaveNPerXdl|
        //############################|        |        |        |      |      |      |        |         |            |            |            |               |         |      |      |      |      |    |    |     |     |     |     |                |               |               |               |               |               |          |                |               |               |              |               |               |          |            |            |                             |                |
        DeviceContraction_Xdl_CShuffle< NumDimM, NumDimN, NumDimK,   F32,   F32,   F32,     F32,      F32, PassThrough, PassThrough, PassThrough,    GemmDefault,        1,   256,   256,   128,    16,   4,   4,   32,   32,    4,    2,     S<4, 64, 1>,     S<1, 0, 2>,     S<1, 0, 2>,              2,              4,              4,         1,     S<4, 64, 1>,     S<1, 0, 2>,     S<1, 0, 2>,             2,              4,              4,         1,           1,           1,              S<1, 16, 1, 16>,              4>;
Chao Liu's avatar
Chao Liu committed
51
52
// clang-format on

53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69

template <typename T, typename Range>
void LogRangeToFile(std::ofstream& fs, Range&& range, std::string delim)
{
    bool first = true;
    for(auto&& v : range)
    {
        if(first)
            first = false;
        else
            fs << delim;
        fs << static_cast<T>(v);
    }
    return;
}


Chao Liu's avatar
Chao Liu committed
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
// hardcoded for NumDimM == NumDimN == NumDimK == 2
template <ck::index_t NumDimM,
          ck::index_t NumDimN,
          ck::index_t NumDimK,
          typename ADataType,
          typename BDataType,
          typename CDataType,
          typename AccDataType,
          typename AElementwiseOperation,
          typename BElementwiseOperation,
          typename CElementwiseOperation,
          ck::enable_if_t<NumDimM == 2 && NumDimN == 2 && NumDimK == 2, bool> = false>
struct ReferenceContraction_M2_N2_K2 : public ck::tensor_operation::device::BaseOperator
{
    // Argument
    struct Argument : public ck::tensor_operation::device::BaseArgument
    {
        Argument(const Tensor<ADataType>& a_ms_ks,
                 const Tensor<BDataType>& b_ks_ns,
                 Tensor<CDataType>& c_ms_ns,
                 AElementwiseOperation a_element_op,
                 BElementwiseOperation b_element_op,
                 CElementwiseOperation c_element_op)
            : a_ms_ks_{a_ms_ks},
              b_ks_ns_{b_ks_ns},
              c_ms_ns_{c_ms_ns},
              a_element_op_{a_element_op},
              b_element_op_{b_element_op},
              c_element_op_{c_element_op}
        {
        }

        const Tensor<ADataType>& a_ms_ks_;
        const Tensor<BDataType>& b_ks_ns_;
        Tensor<CDataType>& c_ms_ns_;

        AElementwiseOperation a_element_op_;
        BElementwiseOperation b_element_op_;
        CElementwiseOperation c_element_op_;
    };

    // Invoker
    struct Invoker : public ck::tensor_operation::device::BaseInvoker
    {
        using Argument = ReferenceContraction_M2_N2_K2::Argument;

        float Run(const Argument& arg)
        {
            auto f_ms_ns = [&](auto m0, auto m1, auto n0, auto n1) {
                const int K0 = arg.a_ms_ks_.mDesc.GetLengths()[2];
                const int K1 = arg.a_ms_ks_.mDesc.GetLengths()[3];

                AccDataType v_acc = 0;

                for(int k0 = 0; k0 < K0; ++k0)
                {
                    for(int k1 = 0; k1 < K1; ++k1)
                    {
                        AccDataType v_a;
                        AccDataType v_b;

                        arg.a_element_op_(
                            v_a, static_cast<const AccDataType>(arg.a_ms_ks_(m0, m1, k0, k1)));
                        arg.b_element_op_(
                            v_b, static_cast<const AccDataType>(arg.b_ks_ns_(k0, k1, n0, n1)));

                        v_acc += v_a * v_b;
                    }
                }

                AccDataType v_c;

                arg.c_element_op_(v_c, v_acc);

                arg.c_ms_ns_(m0, m1, n0, n1) = v_c;
            };

            make_ParallelTensorFunctor(f_ms_ns,
                                       arg.c_ms_ns_.mDesc.GetLengths()[0],
                                       arg.c_ms_ns_.mDesc.GetLengths()[1],
                                       arg.c_ms_ns_.mDesc.GetLengths()[2],
                                       arg.c_ms_ns_.mDesc.GetLengths()[3])(
                std::thread::hardware_concurrency());

            return 0;
        }

        float Run(const ck::tensor_operation::device::BaseArgument* p_arg,
                  const StreamConfig& /* stream_config */ = StreamConfig{}) override
        {
            return Run(*dynamic_cast<const Argument*>(p_arg));
        }
    };

    static constexpr bool IsValidCompilationParameter()
    {
        // TODO: properly implement this check
        return true;
    }

    bool IsSupportedArgument(const ck::tensor_operation::device::BaseArgument*) override
    {
        return true;
    }

    static auto MakeArgument(const Tensor<ADataType>& a_ms_ks,
                             const Tensor<BDataType>& b_ks_ns,
                             Tensor<CDataType>& c_ms_ns,
                             AElementwiseOperation a_element_op,
                             BElementwiseOperation b_element_op,
                             CElementwiseOperation c_element_op)
    {
        return Argument{a_ms_ks, b_ks_ns, c_ms_ns, a_element_op, b_element_op, c_element_op};
    }

    static auto MakeInvoker() { return Invoker{}; }

    virtual std::unique_ptr<ck::tensor_operation::device::BaseInvoker> MakeInvokerPointer()
    {
        return std::make_unique<Invoker>(Invoker{});
    }

    std::string GetTypeString() const override
    {
        auto str = std::stringstream();

        // clang-format off
        str << "ReferenceContraction_M2_N2_K2"
            << std::endl;
        // clang-format on

        return str.str();
    }
};

using ReferenceOpInstance = ReferenceContraction_M2_N2_K2<NumDimM,
                                                          NumDimN,
                                                          NumDimK,
                                                          ADataType,
                                                          BDataType,
                                                          CDataType,
                                                          AccDataType,
                                                          AElementOp,
                                                          BElementOp,
                                                          CElementOp>;
Chao Liu's avatar
Chao Liu committed
215
216
217
218

int main(int argc, char* argv[])
{
    bool do_verification = true;
219
    int init_method      = 3;
Chao Liu's avatar
Chao Liu committed
220
221
222
223
224
225
226
227
228
229
230
    bool time_kernel     = false;

    if(argc == 4)
    {
        do_verification = std::stoi(argv[1]);
        init_method     = std::stoi(argv[2]);
        time_kernel     = std::stoi(argv[3]);
    }
    else
    {
        printf("arg1: verification (0=no, 1=yes)\n");
231
        printf("arg2: initialization (0=no init, 1=integer value, 2=decimal value, 3=cutensor_style_init)\n");
Chao Liu's avatar
Chao Liu committed
232
        printf("arg3: time kernel (0=no, 1=yes)\n");
Chao Liu's avatar
Chao Liu committed
233
234
235
        exit(0);
    }

236
237
238
239
240
241
242
243
244
245
    std::ofstream tensorA;
    std::ofstream tensorB;
    std::ofstream tensorC;
    std::ofstream tensorC_d;
    std::cout << "RAND_MAX value is " << RAND_MAX << std::endl;

    

#if 0
    // a[m0, m1, k0, k1]
Chao Liu's avatar
format  
Chao Liu committed
246
    std::vector<ck::index_t> a_ms_ks_lengths{30, 128, 32, 64};
247
248
    //std::vector<ck::index_t> a_ms_ks_strides{524288, 4096, 128, 1};
    // b[k0, k1, n0, n1]
Chao Liu's avatar
format  
Chao Liu committed
249
    std::vector<ck::index_t> b_ks_ns_lengths{32, 64, 32, 64};
250
251
    //std::vector<ck::index_t> b_ks_ns_strides{128, 1, 524288, 4096};
    // c[m0, m1, n0, n1]
Chao Liu's avatar
format  
Chao Liu committed
252
    std::vector<ck::index_t> c_ms_ns_lengths{30, 128, 32, 64};
253
254
255
256
257
258
259
260
261
262
263
264
265
266
    //std::vector<ck::index_t> c_ms_ns_strides{524288, 4096, 128, 1};
#else  
    // a[m0, m1, k0, k1]
    std::vector<ck::index_t> a_ms_ks_lengths{5,6,3,4};
    //std::vector<ck::index_t> a_ms_ks_strides{108,20,16,1};
    // b[k0, k1, n0, n1]
    std::vector<ck::index_t> b_ks_ns_lengths{3,4,3,4};
    //std::vector<ck::index_t> b_ks_ns_strides{16,1,108,20};
    // c[m0, m1, n0, n1]
    std::vector<ck::index_t> c_ms_ns_lengths{5,6,3,4};
    //std::vector<ck::index_t> c_ms_ns_strides{108,20,16,1};
#endif

#if 0
Chao Liu's avatar
Chao Liu committed
267
268
269
270
271
272
273
274
275
276
277
278
    Tensor<ADataType> a_ms_ks(
        std::vector<std::size_t>(a_ms_ks_lengths.begin(), a_ms_ks_lengths.end()),
        std::vector<std::size_t>(a_ms_ks_strides.begin(), a_ms_ks_strides.end()));
    Tensor<BDataType> b_ks_ns(
        std::vector<std::size_t>(b_ks_ns_lengths.begin(), b_ks_ns_lengths.end()),
        std::vector<std::size_t>(b_ks_ns_strides.begin(), b_ks_ns_strides.end()));
    Tensor<CDataType> c_ms_ns_host_result(
        std::vector<std::size_t>(c_ms_ns_lengths.begin(), c_ms_ns_lengths.end()),
        std::vector<std::size_t>(c_ms_ns_strides.begin(), c_ms_ns_strides.end()));
    Tensor<CDataType> c_ms_ns_device_result(
        std::vector<std::size_t>(c_ms_ns_lengths.begin(), c_ms_ns_lengths.end()),
        std::vector<std::size_t>(c_ms_ns_strides.begin(), c_ms_ns_strides.end()));
279
280
281
282
283
284
285
286
287
288
#else
    Tensor<ADataType> a_ms_ks(
        std::vector<std::size_t>(a_ms_ks_lengths.begin(), a_ms_ks_lengths.end()));
    Tensor<BDataType> b_ks_ns(
        std::vector<std::size_t>(b_ks_ns_lengths.begin(), b_ks_ns_lengths.end()));
    Tensor<CDataType> c_ms_ns_host_result(
        std::vector<std::size_t>(c_ms_ns_lengths.begin(), c_ms_ns_lengths.end()));
    Tensor<CDataType> c_ms_ns_device_result(
        std::vector<std::size_t>(c_ms_ns_lengths.begin(), c_ms_ns_lengths.end()));
#endif
Chao Liu's avatar
Chao Liu committed
289
290
291
292

    std::cout << "a_ms_ks: " << a_ms_ks.mDesc << std::endl;
    std::cout << "b_ks_ns: " << b_ks_ns.mDesc << std::endl;
    std::cout << "c_ms_ns: " << c_ms_ns_host_result.mDesc << std::endl;
Chao Liu's avatar
Chao Liu committed
293
294
295
296
297

    switch(init_method)
    {
    case 0: break;
    case 1:
Chao Liu's avatar
Chao Liu committed
298
299
        a_ms_ks.GenerateTensorValue(GeneratorTensor_2<ADataType>{-5, 5});
        b_ks_ns.GenerateTensorValue(GeneratorTensor_2<BDataType>{-5, 5});
Chao Liu's avatar
Chao Liu committed
300
301
        break;
    case 2:
Chao Liu's avatar
Chao Liu committed
302
303
        a_ms_ks.GenerateTensorValue(GeneratorTensor_3<ADataType>{0.0, 1.0});
        b_ks_ns.GenerateTensorValue(GeneratorTensor_3<BDataType>{-0.5, 0.5});
Chao Liu's avatar
Chao Liu committed
304
        break;
305
306
307
308
    case 3:
        a_ms_ks.GenerateTensorValue(GeneratorTensor_cuTensor<ADataType>{});
        b_ks_ns.GenerateTensorValue(GeneratorTensor_cuTensor<BDataType>{});
        break;
Chao Liu's avatar
Chao Liu committed
309
    default:
Chao Liu's avatar
Chao Liu committed
310
311
        a_ms_ks.GenerateTensorValue(GeneratorTensor_Sequential<0>{});
        b_ks_ns.GenerateTensorValue(GeneratorTensor_Sequential<1>{});
Chao Liu's avatar
Chao Liu committed
312
313
    }

Chao Liu's avatar
Chao Liu committed
314
315
316
317
    DeviceMem a_ms_ks_device_buf(sizeof(ADataType) * a_ms_ks.mDesc.GetElementSpace());
    DeviceMem b_ks_ns_device_buf(sizeof(BDataType) * b_ks_ns.mDesc.GetElementSpace());
    DeviceMem c_ms_ns_device_buf(sizeof(CDataType) * c_ms_ns_device_result.mDesc.GetElementSpace());

318
319
320
321
    std::cout << "Tensor A element space: " << a_ms_ks.mDesc.GetElementSpace() << std::endl;
    std::cout << "Tensor B element space: " << b_ks_ns.mDesc.GetElementSpace() << std::endl;
    std::cout << "Tensor C element space: " <<  c_ms_ns_device_result.mDesc.GetElementSpace() << std::endl;

Chao Liu's avatar
Chao Liu committed
322
323
    a_ms_ks_device_buf.ToDevice(a_ms_ks.mData.data());
    b_ks_ns_device_buf.ToDevice(b_ks_ns.mData.data());
Chao Liu's avatar
Chao Liu committed
324

Chao Liu's avatar
Chao Liu committed
325
326
    // set zero
    c_ms_ns_device_buf.SetZero();
Chao Liu's avatar
Chao Liu committed
327
328
329
330
331

    auto a_element_op = AElementOp{};
    auto b_element_op = BElementOp{};
    auto c_element_op = CElementOp{};

Chao Liu's avatar
Chao Liu committed
332
333
334
335
336
337
338
    // device operation
    auto op       = DeviceOpInstance{};
    auto invoker  = op.MakeInvoker();
    auto argument = op.MakeArgument(static_cast<ADataType*>(a_ms_ks_device_buf.GetDeviceBuffer()),
                                    static_cast<BDataType*>(b_ks_ns_device_buf.GetDeviceBuffer()),
                                    static_cast<CDataType*>(c_ms_ns_device_buf.GetDeviceBuffer()),
                                    a_ms_ks_lengths,
339
                                    std::vector<ck::index_t>(a_ms_ks.mDesc.mStrides.begin(), a_ms_ks.mDesc.mStrides.end()),
Chao Liu's avatar
Chao Liu committed
340
                                    b_ks_ns_lengths,
341
				    std::vector<ck::index_t>(b_ks_ns.mDesc.mStrides.begin(), b_ks_ns.mDesc.mStrides.end()),
Chao Liu's avatar
Chao Liu committed
342
                                    c_ms_ns_lengths,
343
                                    std::vector<ck::index_t>(c_ms_ns_host_result.mDesc.mStrides.begin(), c_ms_ns_host_result.mDesc.mStrides.end()),
Chao Liu's avatar
Chao Liu committed
344
345
346
347
348
                                    a_element_op,
                                    b_element_op,
                                    c_element_op);

    if(!op.IsSupportedArgument(argument))
Chao Liu's avatar
Chao Liu committed
349
    {
Chao Liu's avatar
Chao Liu committed
350
        std::cout << op.GetTypeString() << " does not support this problem" << std::endl;
Chao Liu's avatar
Chao Liu committed
351
352
353
354
355
356

        return 0;
    }

    float ave_time = invoker.Run(argument, StreamConfig{nullptr, time_kernel});

Chao Liu's avatar
Chao Liu committed
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
    ck::index_t M = std::accumulate(c_ms_ns_lengths.begin(),
                                    c_ms_ns_lengths.begin() + NumDimM,
                                    ck::index_t{1},
                                    std::multiplies<ck::index_t>{});

    ck::index_t N = std::accumulate(c_ms_ns_lengths.begin() + NumDimM,
                                    c_ms_ns_lengths.begin() + NumDimM + NumDimN,
                                    ck::index_t{1},
                                    std::multiplies<ck::index_t>{});

    ck::index_t K = std::accumulate(a_ms_ks_lengths.begin() + NumDimM,
                                    a_ms_ks_lengths.begin() + NumDimM + NumDimK,
                                    ck::index_t{1},
                                    std::multiplies<ck::index_t>{});

Chao Liu's avatar
Chao Liu committed
372
373
374
375
376
377
378
379
380
    std::size_t flop = std::size_t(2) * M * N * K;
    std::size_t num_btype =
        sizeof(ADataType) * M * K + sizeof(BDataType) * K * N + sizeof(CDataType) * M * N;

    float tflops = static_cast<float>(flop) / 1.E9 / ave_time;

    float gb_per_sec = num_btype / 1.E6 / ave_time;

    std::cout << "Perf: " << ave_time << " ms, " << tflops << " TFlops, " << gb_per_sec << " GB/s, "
Chao Liu's avatar
Chao Liu committed
381
              << op.GetTypeString() << std::endl;
Chao Liu's avatar
Chao Liu committed
382

Chao Liu's avatar
Chao Liu committed
383
    c_ms_ns_device_buf.FromDevice(c_ms_ns_device_result.mData.data());
Chao Liu's avatar
Chao Liu committed
384

385
386
387
388
389
390
391
392
393
394
395
    tensorA.open("tensor_A.txt");
    LogRangeToFile<ADataType>(tensorA, a_ms_ks.mData, ","); 
    LogRangeAsType<ADataType>(std::cout<<"Tensor A elements:\n", a_ms_ks.mData,",");
    std::cout<<std::endl;
    tensorA.close();
    tensorB.open("tensor_B.txt");
    LogRangeToFile<BDataType>(tensorB, b_ks_ns.mData, ","); 
    LogRangeAsType<BDataType>(std::cout<<"Tensor B elements:\n", b_ks_ns.mData,",");
    std::cout<<std::endl;
    tensorB.close();

Chao Liu's avatar
Chao Liu committed
396
397
    if(do_verification)
    {
Chao Liu's avatar
Chao Liu committed
398
        auto ref_gemm    = ReferenceOpInstance{};
Chao Liu's avatar
Chao Liu committed
399
400
401
        auto ref_invoker = ref_gemm.MakeInvoker();

        auto ref_argument = ref_gemm.MakeArgument(
Chao Liu's avatar
Chao Liu committed
402
            a_ms_ks, b_ks_ns, c_ms_ns_host_result, a_element_op, b_element_op, c_element_op);
Chao Liu's avatar
Chao Liu committed
403
404
405

        ref_invoker.Run(ref_argument);

406
407
408
409
410
411
412
413
414
415
416
417
418
	    tensorC.open("tensor_C_contraction_host_results.txt");
    	LogRangeToFile<CDataType>(tensorC, c_ms_ns_host_result.mData, ","); 
    	LogRangeAsType<CDataType>(std::cout<<"Tensor C_host elements:\n", c_ms_ns_host_result.mData, ",");
    	std::cout<<std::endl;
	    tensorC.close();

	    tensorC.open("tensor_C_contraction_device_results.txt");
    	LogRangeToFile<CDataType>(tensorC_d, c_ms_ns_device_result.mData, ","); 
    	LogRangeAsType<CDataType>(std::cout<<"Tensor C_device elements:\n", c_ms_ns_device_result.mData, ",");
    	std::cout<<std::endl;
	    tensorC.close();


Chao Liu's avatar
Chao Liu committed
419
        return ck::utils::check_err(c_ms_ns_device_result.mData, c_ms_ns_host_result.mData) ? 0 : 1;
Chao Liu's avatar
Chao Liu committed
420
421
422
423
    }

    return 0;
}