gemm_xdl.cpp 12.8 KB
Newer Older
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
#include <iostream>
#include <numeric>
#include <initializer_list>
#include <cstdlib>
#include <stdlib.h>
#include <half.hpp>
#include "config.hpp"
#include "print.hpp"
#include "device.hpp"
#include "host_tensor.hpp"
#include "host_tensor_generator.hpp"
#include "host_gemm.hpp"
#include "device_tensor.hpp"
#include "device_base.hpp"
#include "device_gemm_xdl.hpp"

Chao Liu's avatar
Chao Liu committed
17
struct PassThrough
18
19
20
21
22
23
24
25
26
{
    template <typename T>
    __host__ __device__ constexpr T operator()(T v) const
    {
        return v;
    }
};

struct Relu
Chao Liu's avatar
Chao Liu committed
27
28
29
30
31
{
    float alpha = 0.1;

    // ReLU
    template <typename T>
32
    __host__ __device__ constexpr T operator()(T v) const
Chao Liu's avatar
Chao Liu committed
33
34
35
36
37
38
    {
        T tmp = alpha * v;
        return tmp > 0 ? tmp : 0;
    }
};

39
40
41
42
43
template <typename ADataType,
          typename BDataType,
          typename CDataType,
          typename ALayout,
          typename BLayout,
Chao Liu's avatar
Chao Liu committed
44
          typename CLayout,
45
46
          typename AElementwiseOperation,
          typename BElementwiseOperation,
Chao Liu's avatar
Chao Liu committed
47
          typename CElementwiseOperation>
48
49
struct DeviceGemmInstance;

50
51
52
template <typename AElementwiseOperation,
          typename BElementwiseOperation,
          typename CElementwiseOperation>
53
54
55
56
57
struct DeviceGemmInstance<ck::half_t,
                          ck::half_t,
                          ck::half_t,
                          ck::tensor_layout::gemm::RowMajor,
                          ck::tensor_layout::gemm::ColumnMajor,
Chao Liu's avatar
Chao Liu committed
58
                          ck::tensor_layout::gemm::RowMajor,
59
60
                          AElementwiseOperation,
                          BElementwiseOperation,
Chao Liu's avatar
Chao Liu committed
61
                          CElementwiseOperation>
62
63
64
65
66
67
68
69
70
71
{
    using F16 = ck::half_t;
    using F32 = float;

    using Row = ck::tensor_layout::gemm::RowMajor;
    using Col = ck::tensor_layout::gemm::ColumnMajor;

    template <ck::index_t... Is>
    using S = ck::Sequence<Is...>;

72
73
74
75
    using AOp = AElementwiseOperation;
    using BOp = BElementwiseOperation;
    using COp = CElementwiseOperation;

76
77
78
    // Compilation parameters for NT problem
    // clang-format off
    using type =
79
80
81
82
83
        //########################################| AData| BData| CData| AccData| ALayout| BLayout| CLayout| AElementwise| BElementwise| CElementwise| Block|  MPer|  NPer| K0Per| K1| MPer| NPer| MXdl| NXdl|  ABlockTransfer|  ABlockTransfer| ABlockTransfer| ABlockTransfer| ABlockTransfer| ABlockTransfer| ABlockTransfer|  BBlockTransfer|  BBlockTransfer| BBlockTransfer| BBlockTransfer| BlockTransfer| BBlockTransfer| BBlockTransfer| CThreadTransfer| CThreadTransfer| ABlockLds| BBlockLds|
        //########################################|  Type|  Type|  Type|    Type|        |        |        |    Operation|    Operation|    Operation|  Size| Block| Block| Block|   |  XDL|  XDL|  Per|  Per|     ThreadSlice|   ThreadCluster|  ThreadCluster| SrcAccessOrder|   SrcVectorDim|      SrcScalar|      DstScalar|     ThreadSlice|   ThreadCluster|  ThreadCluster| SrcAccessOrder|  SrcVectorDim|      SrcScalar|      DstScalar| SrcDstVectorDim|       DstScalar| AddExtraM| AddExtraN|
        //########################################|      |      |      |        |        |        |        |             |             |             |      |      |      |      |   |     |     | Wave| Wave| Lengths_K0_N_K1| Lengths_K0_M_K1|   ArrangeOrder|               |               |      PerVector|   PerVector_K1| Lengths_K0_N_K1| Lengths_K0_N_K1|   ArrangeOrder|               |              |      PerVector|   PerVector_K1|                |       PerVector|          |          |
        //########################################|      |      |      |        |        |        |        |             |             |             |      |      |      |      |   |     |     |     |     |                |                |               |               |               |               |               |                |                |               |               |              |               |               |                |                |          |          |
        ck::tensor_operation::device::DeviceGemmXdl<  F16,   F16,   F16,     F32,     Row,     Col,     Row,          AOp,          BOp,          COp,   256,   256,   128,     4,  8,   32,   32,    4,    2,      S<1, 4, 8>,     S<4, 64, 1>,     S<1, 0, 2>,     S<1, 0, 2>,              2,              8,              8,      S<1, 2, 8>,     S<4, 64, 1>,     S<1, 0, 2>,     S<1, 0, 2>,             2,              8,              8,               7,               1,      true,      true>;
84
85
86
    // clang-format on
};

87
88
89
template <typename AElementwiseOperation,
          typename BElementwiseOperation,
          typename CElementwiseOperation>
90
91
92
93
94
struct DeviceGemmInstance<float,
                          float,
                          float,
                          ck::tensor_layout::gemm::RowMajor,
                          ck::tensor_layout::gemm::ColumnMajor,
Chao Liu's avatar
Chao Liu committed
95
                          ck::tensor_layout::gemm::RowMajor,
96
97
                          AElementwiseOperation,
                          BElementwiseOperation,
Chao Liu's avatar
Chao Liu committed
98
                          CElementwiseOperation>
99
100
101
102
103
104
105
106
107
108
{
    using F16 = ck::half_t;
    using F32 = float;

    using Row = ck::tensor_layout::gemm::RowMajor;
    using Col = ck::tensor_layout::gemm::ColumnMajor;

    template <ck::index_t... Is>
    using S = ck::Sequence<Is...>;

109
110
111
112
    using AOp = AElementwiseOperation;
    using BOp = BElementwiseOperation;
    using COp = CElementwiseOperation;

113
114
115
    // Compilation parameters for NT problem
    // clang-format off
    using type =
116
117
118
119
120
    //########################################| AData| BData| CData| AccData| ALayout| BLayout| CLayout| AElementwise| BElementwise| CElementwise| Block|  MPer|  NPer| K0Per| K1| MPer| NPer| MXdl| NXdl|  ABlockTransfer|  ABlockTransfer| ABlockTransfer| ABlockTransfer| ABlockTransfer| ABlockTransfer| ABlockTransfer|  BBlockTransfer|  BBlockTransfer| BBlockTransfer| BBlockTransfer| BlockTransfer| BBlockTransfer| BBlockTransfer| CThreadTransfer| CThreadTransfer| ABlockLds| BBlockLds|
    //########################################|  Type|  Type|  Type|    Type|        |        |        |    Operation|    Operation|    Operation|  Size| Block| Block| Block|   |  XDL|  XDL|  Per|  Per|     ThreadSlice|   ThreadCluster|  ThreadCluster| SrcAccessOrder|   SrcVectorDim|      SrcScalar|      DstScalar|     ThreadSlice|   ThreadCluster|  ThreadCluster| SrcAccessOrder|  SrcVectorDim|      SrcScalar|      DstScalar| SrcDstVectorDim|       DstScalar| AddExtraM| AddExtraN|
    //########################################|      |      |      |        |        |        |        |             |             |             |      |      |      |      |   |     |     | Wave| Wave| Lengths_K0_N_K1| Lengths_K0_M_K1|   ArrangeOrder|               |               |      PerVector|   PerVector_K1| Lengths_K0_N_K1| Lengths_K0_N_K1|   ArrangeOrder|               |              |      PerVector|   PerVector_K1|                |       PerVector|          |          |
    //########################################|      |      |      |        |        |        |        |             |             |             |      |      |      |      |   |     |     |     |     |                |                |               |               |               |               |               |                |                |               |               |              |               |               |                |                |          |          |
    ck::tensor_operation::device::DeviceGemmXdl<  F32,   F32,   F32,     F32,     Row,     Col,     Row,          AOp,          BOp,          COp,   256,   256,   128,     4,  4,   32,   32,    4,    2,      S<1, 4, 4>,     S<4, 64, 1>,     S<1, 0, 2>,     S<1, 0, 2>,              2,              4,              4,      S<1, 2, 4>,     S<4, 64, 1>,     S<1, 0, 2>,     S<1, 0, 2>,             2,              4,              4,               7,               1,      true,      true>;
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
    // clang-format on
};

int main(int argc, char* argv[])
{
    if(argc != 4)
    {
        printf("arg1: verification (0=no, 1=yes)\n");
        printf("arg2: initialization (0=no init, 1=integer value, 2=decimal value)\n");
        printf("arg3: run kernel # of times (>1)\n");
        exit(0);
    }

    const bool do_verification = std::stoi(argv[1]);
    const int init_method      = std::stoi(argv[2]);
    const int nrepeat          = std::stoi(argv[3]);

    // GEMM shape
    ck::index_t M = 3840;
    ck::index_t N = 4096;
    ck::index_t K = 4096;

    ck::index_t StrideA = 4096;
    ck::index_t StrideB = 4096;
    ck::index_t StrideC = 4096;

    // matrix data type
    using ADataType = ck::half_t;
    using BDataType = ck::half_t;
    using CDataType = ck::half_t;

    // matrix layout
    using ALayout = ck::tensor_layout::gemm::RowMajor;
    using BLayout = ck::tensor_layout::gemm::ColumnMajor;
    using CLayout = ck::tensor_layout::gemm::RowMajor;

    auto f_host_tensor_descriptor =
        [](std::size_t row, std::size_t col, std::size_t stride, auto layout) {
            if(std::is_same<decltype(layout), ck::tensor_layout::gemm::RowMajor>::value)
            {
                return HostTensorDescriptor(std::vector<std::size_t>({row, col}),
                                            std::vector<std::size_t>({stride, 1}));
            }
            else
            {
                return HostTensorDescriptor(std::vector<std::size_t>({row, col}),
                                            std::vector<std::size_t>({1, stride}));
            }
        };

    Tensor<ADataType> a_m_k(f_host_tensor_descriptor(M, K, StrideA, ALayout{}));
    Tensor<BDataType> b_k_n(f_host_tensor_descriptor(K, N, StrideB, BLayout{}));
    Tensor<BDataType> c_m_n_host_result(f_host_tensor_descriptor(M, N, StrideC, CLayout{}));
    Tensor<BDataType> c_m_n_device_result(f_host_tensor_descriptor(M, N, StrideC, CLayout{}));

    std::cout << "a_m_k: " << a_m_k.mDesc << std::endl;
    std::cout << "b_k_n: " << b_k_n.mDesc << std::endl;
    std::cout << "c_m_n: " << c_m_n_host_result.mDesc << std::endl;

    switch(init_method)
    {
    case 0: break;
    case 1:
184
185
        a_m_k.GenerateTensorValue(GeneratorTensor_2<ADataType>{-5, 5});
        b_k_n.GenerateTensorValue(GeneratorTensor_2<BDataType>{-5, 5});
186
187
        break;
    default:
188
189
        a_m_k.GenerateTensorValue(GeneratorTensor_3<ADataType>{0.0, 1.0});
        b_k_n.GenerateTensorValue(GeneratorTensor_3<BDataType>{-0.5, 0.5});
190
191
192
193
194
195
196
197
198
199
200
    }

    DeviceMem a_m_k_device_buf(sizeof(ADataType) * a_m_k.mDesc.GetElementSpace());
    DeviceMem b_k_n_device_buf(sizeof(BDataType) * b_k_n.mDesc.GetElementSpace());
    DeviceMem c_m_n_device_buf(sizeof(CDataType) * c_m_n_device_result.mDesc.GetElementSpace());

    a_m_k_device_buf.ToDevice(a_m_k.mData.data());
    b_k_n_device_buf.ToDevice(b_k_n.mData.data());
    c_m_n_device_buf.ToDevice(c_m_n_device_result.mData.data());

    // do GEMM
Chao Liu's avatar
Chao Liu committed
201
202
203
204
205
206
    auto gemm = typename DeviceGemmInstance<ADataType,
                                            BDataType,
                                            CDataType,
                                            ALayout,
                                            BLayout,
                                            CLayout,
Chao Liu's avatar
Chao Liu committed
207
208
                                            PassThrough,
                                            PassThrough,
209
                                            Relu>::type{};
210
211
212
213
214
215
216
217
218
219

    auto invoker  = gemm.MakeInvoker();
    auto argument = gemm.MakeArgument(static_cast<ADataType*>(a_m_k_device_buf.GetDeviceBuffer()),
                                      static_cast<BDataType*>(b_k_n_device_buf.GetDeviceBuffer()),
                                      static_cast<CDataType*>(c_m_n_device_buf.GetDeviceBuffer()),
                                      M,
                                      N,
                                      K,
                                      StrideA,
                                      StrideB,
Chao Liu's avatar
Chao Liu committed
220
                                      StrideC,
Chao Liu's avatar
Chao Liu committed
221
222
                                      PassThrough{},
                                      PassThrough{},
223
                                      Relu{});
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248

    if(!gemm.IsSupportedArgument(argument))
    {
        throw std::runtime_error(
            "wrong! device_gemm with the specified compilation parameters does "
            "not support this GEMM problem");
    }

    float ave_time = invoker.Run(argument, nrepeat);

    std::size_t flop = std::size_t(2) * M * N * K;
    std::size_t num_btype =
        sizeof(ADataType) * M * K + sizeof(BDataType) * K * M + sizeof(CDataType) * M * N;

    float tflops = static_cast<float>(flop) / 1.E9 / ave_time;

    float gb_per_sec = num_btype / 1.E6 / ave_time;

    std::cout << "Perf: " << ave_time << " ms, " << tflops << " TFlops, " << gb_per_sec << " GB/s"
              << std::endl;

    c_m_n_device_buf.FromDevice(c_m_n_device_result.mData.data());

    if(do_verification)
    {
Chao Liu's avatar
Chao Liu committed
249
        host_gemm_mk_kn_mn(a_m_k, b_k_n, c_m_n_host_result, PassThrough{}, PassThrough{}, Relu{});
250
251
252
253

        check_error(c_m_n_host_result, c_m_n_device_result);
    }
}