gemm_xdl.cpp 11.6 KB
Newer Older
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
#include <iostream>
#include <numeric>
#include <initializer_list>
#include <cstdlib>
#include <stdlib.h>
#include <half.hpp>
#include "config.hpp"
#include "print.hpp"
#include "device.hpp"
#include "host_tensor.hpp"
#include "host_tensor_generator.hpp"
#include "host_gemm.hpp"
#include "device_tensor.hpp"
#include "device_base.hpp"
#include "device_gemm_xdl.hpp"

17
struct Activation
Chao Liu's avatar
Chao Liu committed
18
19
20
21
22
23
24
25
26
27
28
29
{
    float alpha = 0.1;

    // ReLU
    template <typename T>
    __host__ __device__ T operator()(T v) const
    {
        T tmp = alpha * v;
        return tmp > 0 ? tmp : 0;
    }
};

30
31
32
33
34
template <typename ADataType,
          typename BDataType,
          typename CDataType,
          typename ALayout,
          typename BLayout,
Chao Liu's avatar
Chao Liu committed
35
36
          typename CLayout,
          typename CElementwiseOperation>
37
38
struct DeviceGemmInstance;

Chao Liu's avatar
Chao Liu committed
39
template <typename CElementwiseOperation>
40
41
42
43
44
struct DeviceGemmInstance<ck::half_t,
                          ck::half_t,
                          ck::half_t,
                          ck::tensor_layout::gemm::RowMajor,
                          ck::tensor_layout::gemm::ColumnMajor,
Chao Liu's avatar
Chao Liu committed
45
46
                          ck::tensor_layout::gemm::RowMajor,
                          CElementwiseOperation>
47
48
49
50
51
52
53
54
55
56
57
58
59
{
    using F16 = ck::half_t;
    using F32 = float;

    using Row = ck::tensor_layout::gemm::RowMajor;
    using Col = ck::tensor_layout::gemm::ColumnMajor;

    template <ck::index_t... Is>
    using S = ck::Sequence<Is...>;

    // Compilation parameters for NT problem
    // clang-format off
    using type =
Chao Liu's avatar
Chao Liu committed
60
61
62
63
64
        //########################################| AData| BData| CData| AccData| ALayout| BLayout| CLayout| CElementwiseOperation| Block|  MPer|  NPer| K0Per| K1| MPer| NPer| MXdl| NXdl|  ABlockTransfer|  ABlockTransfer| ABlockTransfer| ABlockTransfer| ABlockTransfer| ABlockTransfer| ABlockTransfer|  BBlockTransfer|  BBlockTransfer| BBlockTransfer| BBlockTransfer| BlockTransfer| BBlockTransfer| BBlockTransfer| CThreadTransfer| CThreadTransfer| ABlockLds| BBlockLds|
        //########################################|  Type|  Type|  Type|    Type|        |        |        |                      |  Size| Block| Block| Block|   |  XDL|  XDL|  Per|  Per|     ThreadSlice|   ThreadCluster|  ThreadCluster| SrcAccessOrder|   SrcVectorDim|      SrcScalar|      DstScalar|     ThreadSlice|   ThreadCluster|  ThreadCluster| SrcAccessOrder|  SrcVectorDim|      SrcScalar|      DstScalar| SrcDstVectorDim|       DstScalar| AddExtraM| AddExtraN|
        //########################################|      |      |      |        |        |        |        |                      |      |      |      |      |   |     |     | Wave| Wave| Lengths_K0_N_K1| Lengths_K0_M_K1|   ArrangeOrder|               |               |      PerVector|   PerVector_K1| Lengths_K0_N_K1| Lengths_K0_N_K1|   ArrangeOrder|               |              |      PerVector|   PerVector_K1|                |       PerVector|          |          |
        //########################################|      |      |      |        |        |        |        |                      |      |      |      |      |   |     |     |     |     |                |                |               |               |               |               |               |                |                |               |               |              |               |               |                |                |          |          |
        ck::tensor_operation::device::DeviceGemmXdl<  F16,   F16,   F16,     F32,     Row,     Col,     Row, CElementwiseOperation,   256,   256,   128,     4,  8,   32,   32,    4,    2,      S<1, 4, 8>,     S<4, 64, 1>,     S<1, 0, 2>,     S<1, 0, 2>,              2,              8,              8,      S<1, 2, 8>,     S<4, 64, 1>,     S<1, 0, 2>,     S<1, 0, 2>,             2,              8,              8,               7,               1,      true,      true>;
65
66
67
    // clang-format on
};

Chao Liu's avatar
Chao Liu committed
68
template <typename CElementwiseOperation>
69
70
71
72
73
struct DeviceGemmInstance<float,
                          float,
                          float,
                          ck::tensor_layout::gemm::RowMajor,
                          ck::tensor_layout::gemm::ColumnMajor,
Chao Liu's avatar
Chao Liu committed
74
75
                          ck::tensor_layout::gemm::RowMajor,
                          CElementwiseOperation>
76
77
78
79
80
81
82
83
84
85
86
87
88
{
    using F16 = ck::half_t;
    using F32 = float;

    using Row = ck::tensor_layout::gemm::RowMajor;
    using Col = ck::tensor_layout::gemm::ColumnMajor;

    template <ck::index_t... Is>
    using S = ck::Sequence<Is...>;

    // Compilation parameters for NT problem
    // clang-format off
    using type =
Chao Liu's avatar
Chao Liu committed
89
90
91
92
93
    //########################################| AData| BData| CData| AccData| ALayout| BLayout| CLayout| CElementwiseOperation| Block|  MPer|  NPer| K0Per| K1| MPer| NPer| MXdl| NXdl|  ABlockTransfer|  ABlockTransfer| ABlockTransfer| ABlockTransfer| ABlockTransfer| ABlockTransfer| ABlockTransfer|  BBlockTransfer|  BBlockTransfer| BBlockTransfer| BBlockTransfer| BlockTransfer| BBlockTransfer| BBlockTransfer| CThreadTransfer| CThreadTransfer| ABlockLds| BBlockLds|
    //########################################|  Type|  Type|  Type|    Type|        |        |        |                      |  Size| Block| Block| Block|   |  XDL|  XDL|  Per|  Per|     ThreadSlice|   ThreadCluster|  ThreadCluster| SrcAccessOrder|   SrcVectorDim|      SrcScalar|      DstScalar|     ThreadSlice|   ThreadCluster|  ThreadCluster| SrcAccessOrder|  SrcVectorDim|      SrcScalar|      DstScalar| SrcDstVectorDim|       DstScalar| AddExtraM| AddExtraN|
    //########################################|      |      |      |        |        |        |        |                      |      |      |      |      |   |     |     | Wave| Wave| Lengths_K0_N_K1| Lengths_K0_M_K1|   ArrangeOrder|               |               |      PerVector|   PerVector_K1| Lengths_K0_N_K1| Lengths_K0_N_K1|   ArrangeOrder|               |              |      PerVector|   PerVector_K1|                |       PerVector|          |          |
    //########################################|      |      |      |        |        |        |        |                      |      |      |      |      |   |     |     |     |     |                |                |               |               |               |               |               |                |                |               |               |              |               |               |                |                |          |          |
    ck::tensor_operation::device::DeviceGemmXdl<  F32,   F32,   F32,     F32,     Row,     Col,     Row, CElementwiseOperation,   256,   256,   128,     4,  4,   32,   32,    4,    2,      S<1, 4, 4>,     S<4, 64, 1>,     S<1, 0, 2>,     S<1, 0, 2>,              2,              4,              4,      S<1, 2, 4>,     S<4, 64, 1>,     S<1, 0, 2>,     S<1, 0, 2>,             2,              4,              4,               7,               1,      true,      true>;
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
    // clang-format on
};

int main(int argc, char* argv[])
{
    if(argc != 4)
    {
        printf("arg1: verification (0=no, 1=yes)\n");
        printf("arg2: initialization (0=no init, 1=integer value, 2=decimal value)\n");
        printf("arg3: run kernel # of times (>1)\n");
        exit(0);
    }

    const bool do_verification = std::stoi(argv[1]);
    const int init_method      = std::stoi(argv[2]);
    const int nrepeat          = std::stoi(argv[3]);

    // GEMM shape
    ck::index_t M = 3840;
    ck::index_t N = 4096;
    ck::index_t K = 4096;

    ck::index_t StrideA = 4096;
    ck::index_t StrideB = 4096;
    ck::index_t StrideC = 4096;

    // matrix data type
    using ADataType = ck::half_t;
    using BDataType = ck::half_t;
    using CDataType = ck::half_t;

    // matrix layout
    using ALayout = ck::tensor_layout::gemm::RowMajor;
    using BLayout = ck::tensor_layout::gemm::ColumnMajor;
    using CLayout = ck::tensor_layout::gemm::RowMajor;

    auto f_host_tensor_descriptor =
        [](std::size_t row, std::size_t col, std::size_t stride, auto layout) {
            if(std::is_same<decltype(layout), ck::tensor_layout::gemm::RowMajor>::value)
            {
                return HostTensorDescriptor(std::vector<std::size_t>({row, col}),
                                            std::vector<std::size_t>({stride, 1}));
            }
            else
            {
                return HostTensorDescriptor(std::vector<std::size_t>({row, col}),
                                            std::vector<std::size_t>({1, stride}));
            }
        };

    Tensor<ADataType> a_m_k(f_host_tensor_descriptor(M, K, StrideA, ALayout{}));
    Tensor<BDataType> b_k_n(f_host_tensor_descriptor(K, N, StrideB, BLayout{}));
    Tensor<BDataType> c_m_n_host_result(f_host_tensor_descriptor(M, N, StrideC, CLayout{}));
    Tensor<BDataType> c_m_n_device_result(f_host_tensor_descriptor(M, N, StrideC, CLayout{}));

    std::cout << "a_m_k: " << a_m_k.mDesc << std::endl;
    std::cout << "b_k_n: " << b_k_n.mDesc << std::endl;
    std::cout << "c_m_n: " << c_m_n_host_result.mDesc << std::endl;

    switch(init_method)
    {
    case 0: break;
    case 1:
157
158
        a_m_k.GenerateTensorValue(GeneratorTensor_2<ADataType>{-5, 5});
        b_k_n.GenerateTensorValue(GeneratorTensor_2<BDataType>{-5, 5});
159
160
        break;
    default:
161
162
        a_m_k.GenerateTensorValue(GeneratorTensor_3<ADataType>{0.0, 1.0});
        b_k_n.GenerateTensorValue(GeneratorTensor_3<BDataType>{-0.5, 0.5});
163
164
165
166
167
168
169
170
171
172
173
    }

    DeviceMem a_m_k_device_buf(sizeof(ADataType) * a_m_k.mDesc.GetElementSpace());
    DeviceMem b_k_n_device_buf(sizeof(BDataType) * b_k_n.mDesc.GetElementSpace());
    DeviceMem c_m_n_device_buf(sizeof(CDataType) * c_m_n_device_result.mDesc.GetElementSpace());

    a_m_k_device_buf.ToDevice(a_m_k.mData.data());
    b_k_n_device_buf.ToDevice(b_k_n.mData.data());
    c_m_n_device_buf.ToDevice(c_m_n_device_result.mData.data());

    // do GEMM
Chao Liu's avatar
Chao Liu committed
174
175
176
177
178
179
180
181
182
    auto gemm = typename DeviceGemmInstance<ADataType,
                                            BDataType,
                                            CDataType,
                                            ALayout,
                                            BLayout,
                                            CLayout,
                                            Activation>::type{};

    auto activation = Activation{};
183
184
185
186
187
188
189
190
191
192

    auto invoker  = gemm.MakeInvoker();
    auto argument = gemm.MakeArgument(static_cast<ADataType*>(a_m_k_device_buf.GetDeviceBuffer()),
                                      static_cast<BDataType*>(b_k_n_device_buf.GetDeviceBuffer()),
                                      static_cast<CDataType*>(c_m_n_device_buf.GetDeviceBuffer()),
                                      M,
                                      N,
                                      K,
                                      StrideA,
                                      StrideB,
Chao Liu's avatar
Chao Liu committed
193
                                      StrideC,
194
                                      activation);
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219

    if(!gemm.IsSupportedArgument(argument))
    {
        throw std::runtime_error(
            "wrong! device_gemm with the specified compilation parameters does "
            "not support this GEMM problem");
    }

    float ave_time = invoker.Run(argument, nrepeat);

    std::size_t flop = std::size_t(2) * M * N * K;
    std::size_t num_btype =
        sizeof(ADataType) * M * K + sizeof(BDataType) * K * M + sizeof(CDataType) * M * N;

    float tflops = static_cast<float>(flop) / 1.E9 / ave_time;

    float gb_per_sec = num_btype / 1.E6 / ave_time;

    std::cout << "Perf: " << ave_time << " ms, " << tflops << " TFlops, " << gb_per_sec << " GB/s"
              << std::endl;

    c_m_n_device_buf.FromDevice(c_m_n_device_result.mData.data());

    if(do_verification)
    {
Chao Liu's avatar
Chao Liu committed
220
        host_gemm_mk_kn_mn(a_m_k, b_k_n, c_m_n_host_result, activation);
221
222
223
224

        check_error(c_m_n_host_result, c_m_n_device_result);
    }
}