profile_convnd_bwd_data_impl.hpp 17 KB
Newer Older
1
2
3
#pragma once
#include "config.hpp"
#include "device.hpp"
4
#include "conv_fwd_util.hpp"
5
6
7
8
9
10
11
12
13
14
#include "host_tensor.hpp"
#include "host_tensor_generator.hpp"
#include "tensor_layout.hpp"
#include "device_tensor.hpp"
#include "device_conv_bwd_data.hpp"
#include "element_wise_operation.hpp"
#include "reference_conv_bwd_data.hpp"

using F16  = ck::half_t;
using F32  = float;
15
using BF16 = ck::bhalf_t;
16
17
18
19
20
21
22
23
24
25
using INT8 = int8_t;
namespace ck {
namespace tensor_operation {
namespace device {
namespace device_conv2d_bwd_data_instance {

using DeviceConvBwdDataNoOpPtr =
    DeviceConvBwdDataPtr<ck::tensor_operation::element_wise::PassThrough,
                         ck::tensor_operation::element_wise::PassThrough,
                         ck::tensor_operation::element_wise::PassThrough>;
Chao Liu's avatar
Chao Liu committed
26

27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
void add_device_conv1d_bwd_data_xdl_nwc_kxc_nwk_f32_instances(
    std::vector<DeviceConvBwdDataNoOpPtr>&);
void add_device_conv1d_bwd_data_xdl_nwc_kxc_nwk_f16_instances(
    std::vector<DeviceConvBwdDataNoOpPtr>&);
void add_device_conv1d_bwd_data_xdl_nwc_kxc_nwk_bf16_instances(
    std::vector<DeviceConvBwdDataNoOpPtr>&);
void add_device_conv1d_bwd_data_xdl_nwc_kxc_nwk_int8_instances(
    std::vector<DeviceConvBwdDataNoOpPtr>&);

void add_device_conv2d_bwd_data_xdl_nhwc_kyxc_nhwk_f32_instances(
    std::vector<DeviceConvBwdDataNoOpPtr>&);
void add_device_conv2d_bwd_data_xdl_nhwc_kyxc_nhwk_f16_instances(
    std::vector<DeviceConvBwdDataNoOpPtr>&);
void add_device_conv2d_bwd_data_xdl_nhwc_kyxc_nhwk_bf16_instances(
    std::vector<DeviceConvBwdDataNoOpPtr>&);
void add_device_conv2d_bwd_data_xdl_nhwc_kyxc_nhwk_int8_instances(
    std::vector<DeviceConvBwdDataNoOpPtr>&);

void add_device_conv3d_bwd_data_xdl_ndhwc_kzyxc_ndhwk_f32_instances(
    std::vector<DeviceConvBwdDataNoOpPtr>&);
void add_device_conv3d_bwd_data_xdl_ndhwc_kzyxc_ndhwk_f16_instances(
    std::vector<DeviceConvBwdDataNoOpPtr>&);
void add_device_conv3d_bwd_data_xdl_ndhwc_kzyxc_ndhwk_bf16_instances(
    std::vector<DeviceConvBwdDataNoOpPtr>&);
void add_device_conv3d_bwd_data_xdl_ndhwc_kzyxc_ndhwk_int8_instances(
    std::vector<DeviceConvBwdDataNoOpPtr>&);
Chao Liu's avatar
Chao Liu committed
53

54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
} // namespace device_conv2d_bwd_data_instance
} // namespace device
} // namespace tensor_operation
} // namespace ck

namespace ck {
namespace profiler {
using DeviceConvBwdDataNoOpPtr =
    ck::tensor_operation::device::device_conv2d_bwd_data_instance::DeviceConvBwdDataNoOpPtr;

template <typename InLayout>
HostTensorDescriptor get_input_host_tensor_descriptor(const std::vector<std::size_t>& dims,
                                                      int num_dim_spatial = 2)
{
    namespace tl = ck::tensor_layout::convolution;

    switch(num_dim_spatial)
    {
    case 3: {
73
        return ck::utils::conv::get_host_tensor_descriptor(dims, InLayout{});
74
75
    }
    case 2: {
76
        return ck::utils::conv::get_host_tensor_descriptor(dims, InLayout{});
77
78
    }
    case 1: {
79
        return ck::utils::conv::get_host_tensor_descriptor(dims, InLayout{});
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
    }
    default: {
        throw std::runtime_error("Unsupported number of spatial dimensions provided!");
    }
    }
}
template <typename WeiLayout>
HostTensorDescriptor get_filters_host_tensor_descriptor(const std::vector<std::size_t>& dims,
                                                        int num_dim_spatial = 2)
{
    namespace tl = ck::tensor_layout::convolution;

    switch(num_dim_spatial)
    {
    case 3: {
95
        return ck::utils::conv::get_host_tensor_descriptor(dims, WeiLayout{});
96
97
    }
    case 2: {
98
        return ck::utils::conv::get_host_tensor_descriptor(dims, WeiLayout{});
99
100
    }
    case 1: {
101
        return ck::utils::conv::get_host_tensor_descriptor(dims, WeiLayout{});
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
    }
    default: {
        throw std::runtime_error("Unsupported number of spatial dimensions provided!");
    }
    }
}
template <typename OutLayout>
HostTensorDescriptor get_output_host_ensor_descriptor(const std::vector<std::size_t>& dims,
                                                      int num_dim_spatial = 2)
{
    namespace tl = ck::tensor_layout::convolution;

    switch(num_dim_spatial)
    {
    case 3: {
117
        return ck::utils::conv::get_host_tensor_descriptor(dims, OutLayout{});
118
119
    }
    case 2: {
120
        return ck::utils::conv::get_host_tensor_descriptor(dims, OutLayout{});
121
122
    }
    case 1: {
123
        return ck::utils::conv::get_host_tensor_descriptor(dims, OutLayout{});
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
    }
    default: {
        throw std::runtime_error("Unsupported number of spatial dimensions provided!");
    }
    }
}
template <typename InDataType, typename WeiDataType, typename OutDataType>
void get_device_conv_bwd_data_op_ptr(
    InDataType, WeiDataType, OutDataType, std::vector<DeviceConvBwdDataNoOpPtr>&, int)
{
    std::cout << "can not find device conv bwd data" << std::endl;
    exit(1);
}
template <>
void get_device_conv_bwd_data_op_ptr(
    F32, F32, F32, std::vector<DeviceConvBwdDataNoOpPtr>& conv_ptrs, int num_dim_spatial)
{
    switch(num_dim_spatial)
    {
    case 1:
        ck::tensor_operation::device::device_conv2d_bwd_data_instance::
            add_device_conv1d_bwd_data_xdl_nwc_kxc_nwk_f32_instances(conv_ptrs);
        break;
    case 2:
        ck::tensor_operation::device::device_conv2d_bwd_data_instance::
            add_device_conv2d_bwd_data_xdl_nhwc_kyxc_nhwk_f32_instances(conv_ptrs);
        break;
    case 3:
        ck::tensor_operation::device::device_conv2d_bwd_data_instance::
            add_device_conv3d_bwd_data_xdl_ndhwc_kzyxc_ndhwk_f32_instances(conv_ptrs);
        break;
    default: break;
    }
}
template <>
void get_device_conv_bwd_data_op_ptr(
    F16, F16, F16, std::vector<DeviceConvBwdDataNoOpPtr>& conv_ptrs, int num_dim_spatial)
{
    switch(num_dim_spatial)
    {
    case 1:
        ck::tensor_operation::device::device_conv2d_bwd_data_instance::
            add_device_conv1d_bwd_data_xdl_nwc_kxc_nwk_f16_instances(conv_ptrs);
        break;
    case 2:
        ck::tensor_operation::device::device_conv2d_bwd_data_instance::
            add_device_conv2d_bwd_data_xdl_nhwc_kyxc_nhwk_f16_instances(conv_ptrs);
        break;
    case 3:
        ck::tensor_operation::device::device_conv2d_bwd_data_instance::
            add_device_conv3d_bwd_data_xdl_ndhwc_kzyxc_ndhwk_f16_instances(conv_ptrs);
        break;
    default: break;
    }
}
template <>
void get_device_conv_bwd_data_op_ptr(
    BF16, BF16, BF16, std::vector<DeviceConvBwdDataNoOpPtr>& conv_ptrs, int num_dim_spatial)
{
    switch(num_dim_spatial)
    {
    case 1:
        ck::tensor_operation::device::device_conv2d_bwd_data_instance::
            add_device_conv1d_bwd_data_xdl_nwc_kxc_nwk_bf16_instances(conv_ptrs);
        break;
    case 2:
        ck::tensor_operation::device::device_conv2d_bwd_data_instance::
            add_device_conv2d_bwd_data_xdl_nhwc_kyxc_nhwk_bf16_instances(conv_ptrs);
        break;
    case 3:
        ck::tensor_operation::device::device_conv2d_bwd_data_instance::
            add_device_conv3d_bwd_data_xdl_ndhwc_kzyxc_ndhwk_bf16_instances(conv_ptrs);
        break;
    default: break;
    }
}
template <>
void get_device_conv_bwd_data_op_ptr(
    INT8, INT8, INT8, std::vector<DeviceConvBwdDataNoOpPtr>& conv_ptrs, int num_dim_spatial)
{
    switch(num_dim_spatial)
    {
    case 1:
        ck::tensor_operation::device::device_conv2d_bwd_data_instance::
            add_device_conv1d_bwd_data_xdl_nwc_kxc_nwk_int8_instances(conv_ptrs);
        break;
    case 2:
        ck::tensor_operation::device::device_conv2d_bwd_data_instance::
            add_device_conv2d_bwd_data_xdl_nhwc_kyxc_nhwk_int8_instances(conv_ptrs);
        break;
    case 3:
        ck::tensor_operation::device::device_conv2d_bwd_data_instance::
            add_device_conv3d_bwd_data_xdl_ndhwc_kzyxc_ndhwk_int8_instances(conv_ptrs);
        break;
    default: break;
    }
}

template <typename DataType>
void show_data_nhwc_layout(Tensor<DataType>& nhwc)
{
    std::cout << "[";
    for(int n = 0; n < nhwc.mDesc.GetLengths()[0]; n++)
    {
        std::cout << "[";
        for(int hi = 0; hi < nhwc.mDesc.GetLengths()[2]; hi++)
        {
            std::cout << "[";
            for(int wi = 0; wi < nhwc.mDesc.GetLengths()[3]; wi++)
            {
                std::cout << "[";
                for(int c = 0; c < nhwc.mDesc.GetLengths()[1]; c++)
                {
                    std::cout << static_cast<float>(nhwc(n, c, hi, wi)) << "  ";
                }
                std::cout << "]";
            }
            std::cout << "]";
        }
        std::cout << "]";
    }
    std::cout << "]";
}

template <int NDimSpatial,
          typename InDataType,
          typename WeiDataType,
          typename OutDataType,
          typename AccDataType,
          typename InLayout,
          typename WeiLayout,
          typename OutLayout>
bool profile_convnd_bwd_data_impl(int do_verification,
                                  int init_method,
                                  bool do_log,
                                  int nrepeat,
                                  ck::index_t N,
                                  ck::index_t K,
                                  ck::index_t C,
ltqin's avatar
ltqin committed
263
264
265
266
267
268
269
                                  const std::vector<ck::index_t>& input_spatial_lengths,
                                  const std::vector<ck::index_t>& filter_spatial_lengths,
                                  const std::vector<ck::index_t>& output_spatial_lengths,
                                  const std::vector<ck::index_t>& conv_filter_strides,
                                  const std::vector<ck::index_t>& conv_filter_dilations,
                                  const std::vector<ck::index_t>& input_left_pads,
                                  const std::vector<ck::index_t>& input_right_pads)
270
{
Chao Liu's avatar
Chao Liu committed
271
272
    bool pass = true;

273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
    using InElementOp  = ck::tensor_operation::element_wise::PassThrough;
    using WeiElementOp = ck::tensor_operation::element_wise::PassThrough;
    using OutElementOp = ck::tensor_operation::element_wise::PassThrough;

    const auto in_element_op  = InElementOp{};
    const auto wei_element_op = WeiElementOp{};
    const auto out_element_op = OutElementOp{};

    std::vector<std::size_t> input_dims{static_cast<std::size_t>(N), static_cast<std::size_t>(C)};
    input_dims.insert(
        std::end(input_dims), std::begin(input_spatial_lengths), std::end(input_spatial_lengths));

    std::vector<std::size_t> filter_dims{static_cast<std::size_t>(K), static_cast<std::size_t>(C)};
    filter_dims.insert(std::end(filter_dims),
                       std::begin(filter_spatial_lengths),
                       std::end(filter_spatial_lengths));

    std::vector<std::size_t> output_dims{static_cast<std::size_t>(N), static_cast<std::size_t>(K)};
    output_dims.insert(std::end(output_dims),
                       std::begin(output_spatial_lengths),
                       std::end(output_spatial_lengths));

ltqin's avatar
ltqin committed
295
    Tensor<InDataType> input_host_result(
296
        get_input_host_tensor_descriptor<InLayout>(input_dims, NDimSpatial));
ltqin's avatar
ltqin committed
297
    Tensor<InDataType> input_device_result(
298
        get_input_host_tensor_descriptor<InLayout>(input_dims, NDimSpatial));
ltqin's avatar
ltqin committed
299
    Tensor<WeiDataType> weights(
300
        get_filters_host_tensor_descriptor<WeiLayout>(filter_dims, NDimSpatial));
ltqin's avatar
ltqin committed
301
    Tensor<OutDataType> output(
302
303
        get_output_host_ensor_descriptor<OutLayout>(output_dims, NDimSpatial));

ltqin's avatar
ltqin committed
304
305
306
    std::cout << "input: " << input_host_result.mDesc << std::endl;
    std::cout << "weights: " << weights.mDesc << std::endl;
    std::cout << "output: " << output.mDesc << std::endl;
307
308
309
310
311

    switch(init_method)
    {
    case 0: break;
    case 1:
ltqin's avatar
ltqin committed
312
313
        output.GenerateTensorValue(GeneratorTensor_2<OutDataType>{-5, 5});
        weights.GenerateTensorValue(GeneratorTensor_2<WeiDataType>{-5, 5});
314
315
        break;
    default:
ltqin's avatar
ltqin committed
316
317
        output.GenerateTensorValue(GeneratorTensor_1<OutDataType>{1});
        weights.GenerateTensorValue(GeneratorTensor_1<WeiDataType>{1});
318
319
    }

ltqin's avatar
ltqin committed
320
321
322
    DeviceMem in_device_buf(sizeof(InDataType) * input_device_result.mDesc.GetElementSpace());
    DeviceMem wei_device_buf(sizeof(WeiDataType) * weights.mDesc.GetElementSpace());
    DeviceMem out_device_buf(sizeof(OutDataType) * output.mDesc.GetElementSpace());
323

ltqin's avatar
ltqin committed
324
325
    out_device_buf.ToDevice(output.mData.data());
    wei_device_buf.ToDevice(weights.mData.data());
326

Chao Liu's avatar
Chao Liu committed
327
    // reference calculation
328
329
    if(do_verification)
    {
Chao Liu's avatar
Chao Liu committed
330
        auto ref_conv    = ck::tensor_operation::host::ReferenceConvBwdData<InDataType,
ltqin's avatar
ltqin committed
331
332
333
334
335
336
337
                                                                         WeiDataType,
                                                                         OutDataType,
                                                                         AccDataType,
                                                                         InElementOp,
                                                                         WeiElementOp,
                                                                         OutElementOp,
                                                                         NDimSpatial>();
Chao Liu's avatar
Chao Liu committed
338
339
340
341
342
343
344
345
346
347
348
349
350
        auto ref_invoker = ref_conv.MakeInvoker();

        auto ref_argument = ref_conv.MakeArgument(input_host_result,
                                                  weights,
                                                  output,
                                                  conv_filter_strides,
                                                  conv_filter_dilations,
                                                  input_left_pads,
                                                  input_right_pads,
                                                  InElementOp{},
                                                  WeiElementOp{},
                                                  OutElementOp{});
        ref_invoker.Run(ref_argument);
351
352
353
354
355
356
357
    }

    // add device Conv instances
    std::vector<DeviceConvBwdDataNoOpPtr> conv_ptrs;
    get_device_conv_bwd_data_op_ptr(
        InDataType{}, WeiDataType{}, OutDataType{}, conv_ptrs, NDimSpatial);

Chao Liu's avatar
Chao Liu committed
358
    std::cout << "found " << conv_ptrs.size() << " instances" << std::endl;
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389

    std::string best_conv_name;
    float best_ave_time   = 0;
    float best_tflops     = 0;
    float best_gb_per_sec = 0;

    // profile device Conv instances
    for(auto& conv_ptr : conv_ptrs)
    {
        auto argument_ptr = conv_ptr->MakeArgumentPointer(
            static_cast<InDataType*>(in_device_buf.GetDeviceBuffer()),
            static_cast<WeiDataType*>(wei_device_buf.GetDeviceBuffer()),
            static_cast<OutDataType*>(out_device_buf.GetDeviceBuffer()),
            N,
            K,
            C,
            input_spatial_lengths,
            filter_spatial_lengths,
            output_spatial_lengths,
            conv_filter_strides,
            conv_filter_dilations,
            input_left_pads,
            input_right_pads,
            in_element_op,
            wei_element_op,
            out_element_op);

        auto invoker_ptr = conv_ptr->MakeInvokerPointer();

        if(conv_ptr->IsSupportedArgument(argument_ptr.get()))
        {
Chao Liu's avatar
Chao Liu committed
390
391
392
            // re-init to zero before profiling next kernel
            in_device_buf.SetZero();

393
394
395
396
397
            std::string conv_name = conv_ptr->GetTypeString();

            float ave_time = invoker_ptr->Run(argument_ptr.get(), nrepeat);

            std::size_t flop =
398
399
400
401
                ck::utils::conv::get_flops(N, C, K, filter_spatial_lengths, output_spatial_lengths);
            std::size_t num_btype =
                ck::utils::conv::get_btype<InDataType, WeiDataType, OutDataType>(
                    N, C, K, input_spatial_lengths, filter_spatial_lengths, output_spatial_lengths);
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418

            float tflops     = static_cast<float>(flop) / 1.E9 / ave_time;
            float gb_per_sec = num_btype / 1.E6 / ave_time;

            std::cout << "Perf: " << ave_time << " ms, " << tflops << " TFlops, " << gb_per_sec
                      << " GB/s" << std::endl;

            if(tflops > best_tflops)
            {
                best_conv_name  = conv_name;
                best_tflops     = tflops;
                best_ave_time   = ave_time;
                best_gb_per_sec = gb_per_sec;
            }

            if(do_verification)
            {
ltqin's avatar
ltqin committed
419
                in_device_buf.FromDevice(input_device_result.mData.data());
420

Chao Liu's avatar
Chao Liu committed
421
422
                pass = pass &&
                       ck::utils::check_err(input_device_result.mData, input_host_result.mData);
423
424
425
426

                if(do_log)
                {
                    std::cout << "in : ";
ltqin's avatar
ltqin committed
427
                    show_data_nhwc_layout(output);
428
429
430
                    std::cout << std::endl;

                    std::cout << "wei: ";
ltqin's avatar
ltqin committed
431
                    show_data_nhwc_layout(weights);
432
433
434
                    std::cout << std::endl;

                    std::cout << "out_host  : ";
ltqin's avatar
ltqin committed
435
                    show_data_nhwc_layout(input_host_result);
436
437
438
                    std::cout << std::endl;

                    std::cout << "out_device: ";
ltqin's avatar
ltqin committed
439
                    show_data_nhwc_layout(input_device_result);
440
441
442
443
444
445
446
447
448
                    std::cout << std::endl;
                }
            }
        }
    }

    std::cout << "Best Perf: " << best_ave_time << " ms, " << best_tflops << " TFlops, "
              << best_gb_per_sec << " GB/s, " << best_conv_name << std::endl;

Chao Liu's avatar
Chao Liu committed
449
450
    return pass;
}
451
452
} // namespace profiler
} // namespace ck