profile_batched_gemm_impl.hpp 19.5 KB
Newer Older
zjing14's avatar
zjing14 committed
1
#pragma once
2

Jianfeng Yan's avatar
Jianfeng Yan committed
3
#include <memory>
4

5
#include "check_err.hpp"
6
7
8
9
10
11
#include "config.hpp"
#include "element_wise_operation.hpp"
#include "tensor_layout.hpp"
#include "device.hpp"
#include "host_tensor_generator.hpp"
#include "device_gemm.hpp"
zjing14's avatar
zjing14 committed
12
13
14
15
16
17
18
19
20
21
22
23
#include "reference_batched_gemm.hpp"

namespace ck {
namespace tensor_operation {
namespace device {
namespace device_batched_gemm_instance {

using DeviceGemmNoOpPtr =
    ck::tensor_operation::device::DeviceGemmPtr<ck::tensor_operation::element_wise::PassThrough,
                                                ck::tensor_operation::element_wise::PassThrough,
                                                ck::tensor_operation::element_wise::PassThrough>;

Jianfeng Yan's avatar
Jianfeng Yan committed
24
25
26
27
28
29
30
31
void add_device_batched_gemm_xdl_bf16_bf16_bf16_gmk_gkn_gmn_instances(
    std::vector<DeviceGemmNoOpPtr>&);
void add_device_batched_gemm_xdl_bf16_bf16_bf16_gmk_gnk_gmn_instances(
    std::vector<DeviceGemmNoOpPtr>&);
void add_device_batched_gemm_xdl_bf16_bf16_bf16_gkm_gkn_gmn_instances(
    std::vector<DeviceGemmNoOpPtr>&);
void add_device_batched_gemm_xdl_bf16_bf16_bf16_gkm_gnk_gmn_instances(
    std::vector<DeviceGemmNoOpPtr>&);
zjing14's avatar
zjing14 committed
32
33
34
35
void add_device_batched_gemm_xdl_f16_f16_f16_gmk_gkn_gmn_instances(std::vector<DeviceGemmNoOpPtr>&);
void add_device_batched_gemm_xdl_f16_f16_f16_gmk_gnk_gmn_instances(std::vector<DeviceGemmNoOpPtr>&);
void add_device_batched_gemm_xdl_f16_f16_f16_gkm_gkn_gmn_instances(std::vector<DeviceGemmNoOpPtr>&);
void add_device_batched_gemm_xdl_f16_f16_f16_gkm_gnk_gmn_instances(std::vector<DeviceGemmNoOpPtr>&);
36
37
38
39
void add_device_batched_gemm_xdl_f32_f32_f32_gmk_gkn_gmn_instances(std::vector<DeviceGemmNoOpPtr>&);
void add_device_batched_gemm_xdl_f32_f32_f32_gmk_gnk_gmn_instances(std::vector<DeviceGemmNoOpPtr>&);
void add_device_batched_gemm_xdl_f32_f32_f32_gkm_gkn_gmn_instances(std::vector<DeviceGemmNoOpPtr>&);
void add_device_batched_gemm_xdl_f32_f32_f32_gkm_gnk_gmn_instances(std::vector<DeviceGemmNoOpPtr>&);
Chao Liu's avatar
Chao Liu committed
40
41
42
43
void add_device_batched_gemm_xdl_i8_i8_i8_gmk_gkn_gmn_instances(std::vector<DeviceGemmNoOpPtr>&);
void add_device_batched_gemm_xdl_i8_i8_i8_gmk_gnk_gmn_instances(std::vector<DeviceGemmNoOpPtr>&);
void add_device_batched_gemm_xdl_i8_i8_i8_gkm_gkn_gmn_instances(std::vector<DeviceGemmNoOpPtr>&);
void add_device_batched_gemm_xdl_i8_i8_i8_gkm_gnk_gmn_instances(std::vector<DeviceGemmNoOpPtr>&);
zjing14's avatar
zjing14 committed
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58

} // namespace device_batched_gemm_instance
} // namespace device
} // namespace tensor_operation
} // namespace ck

namespace ck {
namespace profiler {

template <typename ADataType,
          typename BDataType,
          typename CDataType,
          typename ALayout,
          typename BLayout,
          typename CLayout>
59
bool profile_batched_gemm_impl(int do_verification,
zjing14's avatar
zjing14 committed
60
61
62
63
64
65
66
67
68
                               int init_method,
                               bool do_log,
                               int nrepeat,
                               int M,
                               int N,
                               int K,
                               int StrideA,
                               int StrideB,
                               int StrideC,
69
                               int BatchCount)
zjing14's avatar
zjing14 committed
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
{
    auto f_host_tensor_descriptor = [](std::size_t batch_count,
                                       std::size_t row,
                                       std::size_t col,
                                       std::size_t stride,
                                       auto layout) {
        if(is_same<decltype(layout), tensor_layout::gemm::RowMajor>::value)
        {
            return HostTensorDescriptor(std::vector<std::size_t>({batch_count, row, col}),
                                        std::vector<std::size_t>({row * stride, stride, 1}));
        }
        else
        {
            return HostTensorDescriptor(std::vector<std::size_t>({batch_count, row, col}),
                                        std::vector<std::size_t>({col * stride, 1, stride}));
        }
    };

    Tensor<ADataType> a_g_m_k(f_host_tensor_descriptor(BatchCount, M, K, StrideA, ALayout{}));
    Tensor<BDataType> b_g_k_n(f_host_tensor_descriptor(BatchCount, K, N, StrideB, BLayout{}));
    Tensor<CDataType> c_g_m_n_host_result(
        f_host_tensor_descriptor(BatchCount, M, N, StrideC, CLayout{}));
    Tensor<CDataType> c_g_m_n_device_result(
        f_host_tensor_descriptor(BatchCount, M, N, StrideC, CLayout{}));
Jianfeng Yan's avatar
Jianfeng Yan committed
94
95
    std::unique_ptr<Tensor<float>> c_f32_g_m_n_host_result   = nullptr;
    std::unique_ptr<Tensor<float>> c_f32_g_m_n_device_result = nullptr;
zjing14's avatar
zjing14 committed
96
97
98
99
100

    std::cout << "a_g_m_k: " << a_g_m_k.mDesc << std::endl;
    std::cout << "b_g_k_n: " << b_g_k_n.mDesc << std::endl;
    std::cout << "c_g_m_n: " << c_g_m_n_host_result.mDesc << std::endl;

101
    std::size_t num_thread = 1;
zjing14's avatar
zjing14 committed
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
    switch(init_method)
    {
    case 0: break;
    case 1:
        a_g_m_k.GenerateTensorValue(GeneratorTensor_2<ADataType>{-5, 5}, num_thread);
        b_g_k_n.GenerateTensorValue(GeneratorTensor_2<BDataType>{-5, 5}, num_thread);
        break;
    default:
        a_g_m_k.GenerateTensorValue(GeneratorTensor_3<ADataType>{0.0, 1.0}, num_thread);
        b_g_k_n.GenerateTensorValue(GeneratorTensor_3<BDataType>{-0.5, 0.5}, num_thread);
    }
    // set zero to c_device_buf
    c_g_m_n_device_result.GenerateTensorValue(GeneratorTensor_0<CDataType>{}, num_thread);

    using AElementOp = ck::tensor_operation::element_wise::PassThrough;
    using BElementOp = ck::tensor_operation::element_wise::PassThrough;
    using CElementOp = ck::tensor_operation::element_wise::PassThrough;

    const auto a_element_op = AElementOp{};
    const auto b_element_op = BElementOp{};
    const auto c_element_op = CElementOp{};

    if(do_verification)
    {
Jianfeng Yan's avatar
Jianfeng Yan committed
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
        if constexpr(is_same<ADataType, ck::bhalf_t>::value &&
                     is_same<BDataType, ck::bhalf_t>::value &&
                     is_same<CDataType, ck::bhalf_t>::value)
        {
            Tensor<float> a_f32_g_m_k(
                f_host_tensor_descriptor(BatchCount, M, K, StrideA, ALayout{}));
            Tensor<float> b_f32_g_k_n(
                f_host_tensor_descriptor(BatchCount, K, N, StrideB, BLayout{}));
            c_f32_g_m_n_host_result = std::make_unique<Tensor<float>>(
                f_host_tensor_descriptor(BatchCount, M, N, StrideC, CLayout{}));
            c_f32_g_m_n_device_result = std::make_unique<Tensor<float>>(
                f_host_tensor_descriptor(BatchCount, M, N, StrideC, CLayout{}));

            bf16_to_f32_(a_g_m_k, a_f32_g_m_k);
            bf16_to_f32_(b_g_k_n, b_f32_g_k_n);

            using ReferenceBatchedGemmInstance = ck::tensor_operation::host::
                ReferenceBatchedGemm<float, float, float, AElementOp, BElementOp, CElementOp>;

            auto ref_batched_gemm = ReferenceBatchedGemmInstance{};
            auto ref_invoker      = ref_batched_gemm.MakeInvoker();

            auto ref_argument = ref_batched_gemm.MakeArgument(a_f32_g_m_k,
                                                              b_f32_g_k_n,
                                                              *c_f32_g_m_n_host_result,
                                                              a_element_op,
                                                              b_element_op,
                                                              c_element_op);

            ref_invoker.Run(ref_argument);
        }
        else
        {

            using ReferenceBatchedGemmInstance =
                ck::tensor_operation::host::ReferenceBatchedGemm<ADataType,
                                                                 BDataType,
                                                                 CDataType,
                                                                 AElementOp,
                                                                 BElementOp,
                                                                 CElementOp>;
zjing14's avatar
zjing14 committed
167

Jianfeng Yan's avatar
Jianfeng Yan committed
168
169
            auto ref_batched_gemm = ReferenceBatchedGemmInstance{};
            auto ref_invoker      = ref_batched_gemm.MakeInvoker();
zjing14's avatar
zjing14 committed
170

Jianfeng Yan's avatar
Jianfeng Yan committed
171
172
            auto ref_argument = ref_batched_gemm.MakeArgument(
                a_g_m_k, b_g_k_n, c_g_m_n_host_result, a_element_op, b_element_op, c_element_op);
zjing14's avatar
zjing14 committed
173

Jianfeng Yan's avatar
Jianfeng Yan committed
174
175
            ref_invoker.Run(ref_argument);
        }
zjing14's avatar
zjing14 committed
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
    }

    DeviceMem a_device_buf(sizeof(ADataType) * a_g_m_k.mDesc.GetElementSpace());
    DeviceMem b_device_buf(sizeof(BDataType) * b_g_k_n.mDesc.GetElementSpace());
    DeviceMem c_device_buf(sizeof(CDataType) * c_g_m_n_device_result.mDesc.GetElementSpace());

    a_device_buf.ToDevice(a_g_m_k.mData.data());
    b_device_buf.ToDevice(b_g_k_n.mData.data());
    c_device_buf.ToDevice(c_g_m_n_device_result.mData.data());

    // add device GEMM instances
    std::vector<ck::tensor_operation::device::device_batched_gemm_instance::DeviceGemmNoOpPtr>
        gemm_ptrs;

    if constexpr(is_same<ADataType, half_t>::value && is_same<BDataType, half_t>::value &&
                 is_same<CDataType, half_t>::value)
    {
        if constexpr(is_same<ALayout, tensor_layout::gemm::RowMajor>::value &&
                     is_same<BLayout, tensor_layout::gemm::RowMajor>::value &&
                     is_same<CLayout, tensor_layout::gemm::RowMajor>::value)
        {
            ck::tensor_operation::device::device_batched_gemm_instance::
                add_device_batched_gemm_xdl_f16_f16_f16_gmk_gkn_gmn_instances(gemm_ptrs);
        }
        else if constexpr(is_same<ALayout, tensor_layout::gemm::RowMajor>::value &&
                          is_same<BLayout, tensor_layout::gemm::ColumnMajor>::value &&
                          is_same<CLayout, tensor_layout::gemm::RowMajor>::value)
        {
            ck::tensor_operation::device::device_batched_gemm_instance::
                add_device_batched_gemm_xdl_f16_f16_f16_gmk_gnk_gmn_instances(gemm_ptrs);
        }
        else if constexpr(is_same<ALayout, tensor_layout::gemm::ColumnMajor>::value &&
                          is_same<BLayout, tensor_layout::gemm::RowMajor>::value &&
                          is_same<CLayout, tensor_layout::gemm::RowMajor>::value)
        {
            ck::tensor_operation::device::device_batched_gemm_instance::
                add_device_batched_gemm_xdl_f16_f16_f16_gkm_gkn_gmn_instances(gemm_ptrs);
        }
        else if constexpr(is_same<ALayout, tensor_layout::gemm::ColumnMajor>::value &&
                          is_same<BLayout, tensor_layout::gemm::ColumnMajor>::value &&
                          is_same<CLayout, tensor_layout::gemm::RowMajor>::value)
        {
            ck::tensor_operation::device::device_batched_gemm_instance::
                add_device_batched_gemm_xdl_f16_f16_f16_gkm_gnk_gmn_instances(gemm_ptrs);
        }
    }
Jianfeng Yan's avatar
Jianfeng Yan committed
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
    else if constexpr(is_same<ADataType, bhalf_t>::value && is_same<BDataType, bhalf_t>::value &&
                      is_same<CDataType, bhalf_t>::value)
    {
        if constexpr(is_same<ALayout, tensor_layout::gemm::RowMajor>::value &&
                     is_same<BLayout, tensor_layout::gemm::RowMajor>::value &&
                     is_same<CLayout, tensor_layout::gemm::RowMajor>::value)
        {
            ck::tensor_operation::device::device_batched_gemm_instance::
                add_device_batched_gemm_xdl_bf16_bf16_bf16_gmk_gkn_gmn_instances(gemm_ptrs);
        }
        else if constexpr(is_same<ALayout, tensor_layout::gemm::RowMajor>::value &&
                          is_same<BLayout, tensor_layout::gemm::ColumnMajor>::value &&
                          is_same<CLayout, tensor_layout::gemm::RowMajor>::value)
        {
            ck::tensor_operation::device::device_batched_gemm_instance::
                add_device_batched_gemm_xdl_bf16_bf16_bf16_gmk_gnk_gmn_instances(gemm_ptrs);
        }
        else if constexpr(is_same<ALayout, tensor_layout::gemm::ColumnMajor>::value &&
                          is_same<BLayout, tensor_layout::gemm::RowMajor>::value &&
                          is_same<CLayout, tensor_layout::gemm::RowMajor>::value)
        {
            ck::tensor_operation::device::device_batched_gemm_instance::
                add_device_batched_gemm_xdl_bf16_bf16_bf16_gkm_gkn_gmn_instances(gemm_ptrs);
        }
        else if constexpr(is_same<ALayout, tensor_layout::gemm::ColumnMajor>::value &&
                          is_same<BLayout, tensor_layout::gemm::ColumnMajor>::value &&
                          is_same<CLayout, tensor_layout::gemm::RowMajor>::value)
        {
            ck::tensor_operation::device::device_batched_gemm_instance::
                add_device_batched_gemm_xdl_bf16_bf16_bf16_gkm_gnk_gmn_instances(gemm_ptrs);
        }
    }
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
    else if constexpr(is_same<ADataType, float>::value && is_same<BDataType, float>::value &&
                      is_same<CDataType, float>::value)
    {
        if constexpr(is_same<ALayout, tensor_layout::gemm::RowMajor>::value &&
                     is_same<BLayout, tensor_layout::gemm::RowMajor>::value &&
                     is_same<CLayout, tensor_layout::gemm::RowMajor>::value)
        {
            ck::tensor_operation::device::device_batched_gemm_instance::
                add_device_batched_gemm_xdl_f32_f32_f32_gmk_gkn_gmn_instances(gemm_ptrs);
        }
        else if constexpr(is_same<ALayout, tensor_layout::gemm::RowMajor>::value &&
                          is_same<BLayout, tensor_layout::gemm::ColumnMajor>::value &&
                          is_same<CLayout, tensor_layout::gemm::RowMajor>::value)
        {
            ck::tensor_operation::device::device_batched_gemm_instance::
                add_device_batched_gemm_xdl_f32_f32_f32_gmk_gnk_gmn_instances(gemm_ptrs);
        }
        else if constexpr(is_same<ALayout, tensor_layout::gemm::ColumnMajor>::value &&
                          is_same<BLayout, tensor_layout::gemm::RowMajor>::value &&
                          is_same<CLayout, tensor_layout::gemm::RowMajor>::value)
        {
            ck::tensor_operation::device::device_batched_gemm_instance::
                add_device_batched_gemm_xdl_f32_f32_f32_gkm_gkn_gmn_instances(gemm_ptrs);
        }
        else if constexpr(is_same<ALayout, tensor_layout::gemm::ColumnMajor>::value &&
                          is_same<BLayout, tensor_layout::gemm::ColumnMajor>::value &&
                          is_same<CLayout, tensor_layout::gemm::RowMajor>::value)
        {
            ck::tensor_operation::device::device_batched_gemm_instance::
                add_device_batched_gemm_xdl_f32_f32_f32_gkm_gnk_gmn_instances(gemm_ptrs);
        }
    }
    else if constexpr(is_same<ADataType, int8_t>::value && is_same<BDataType, int8_t>::value &&
                      is_same<CDataType, int8_t>::value)
    {
        if constexpr(is_same<ALayout, tensor_layout::gemm::RowMajor>::value &&
                     is_same<BLayout, tensor_layout::gemm::RowMajor>::value &&
                     is_same<CLayout, tensor_layout::gemm::RowMajor>::value)
        {
            ck::tensor_operation::device::device_batched_gemm_instance::
Chao Liu's avatar
Chao Liu committed
294
                add_device_batched_gemm_xdl_i8_i8_i8_gmk_gkn_gmn_instances(gemm_ptrs);
295
296
297
298
299
300
        }
        else if constexpr(is_same<ALayout, tensor_layout::gemm::RowMajor>::value &&
                          is_same<BLayout, tensor_layout::gemm::ColumnMajor>::value &&
                          is_same<CLayout, tensor_layout::gemm::RowMajor>::value)
        {
            ck::tensor_operation::device::device_batched_gemm_instance::
Chao Liu's avatar
Chao Liu committed
301
                add_device_batched_gemm_xdl_i8_i8_i8_gmk_gnk_gmn_instances(gemm_ptrs);
302
303
304
305
306
307
        }
        else if constexpr(is_same<ALayout, tensor_layout::gemm::ColumnMajor>::value &&
                          is_same<BLayout, tensor_layout::gemm::RowMajor>::value &&
                          is_same<CLayout, tensor_layout::gemm::RowMajor>::value)
        {
            ck::tensor_operation::device::device_batched_gemm_instance::
Chao Liu's avatar
Chao Liu committed
308
                add_device_batched_gemm_xdl_i8_i8_i8_gkm_gkn_gmn_instances(gemm_ptrs);
309
310
311
312
313
314
        }
        else if constexpr(is_same<ALayout, tensor_layout::gemm::ColumnMajor>::value &&
                          is_same<BLayout, tensor_layout::gemm::ColumnMajor>::value &&
                          is_same<CLayout, tensor_layout::gemm::RowMajor>::value)
        {
            ck::tensor_operation::device::device_batched_gemm_instance::
Chao Liu's avatar
Chao Liu committed
315
                add_device_batched_gemm_xdl_i8_i8_i8_gkm_gnk_gmn_instances(gemm_ptrs);
316
317
        }
    }
zjing14's avatar
zjing14 committed
318

Chao Liu's avatar
Chao Liu committed
319
    std::cout << "found " << gemm_ptrs.size() << " instances" << std::endl;
zjing14's avatar
zjing14 committed
320
321
322
323
324

    std::string best_gemm_name;
    float best_ave_time   = 0;
    float best_tflops     = 0;
    float best_gb_per_sec = 0;
Chao Liu's avatar
Chao Liu committed
325
    bool pass             = true;
zjing14's avatar
zjing14 committed
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377

    // profile device GEMM instances
    for(auto& gemm_ptr : gemm_ptrs)
    {
        auto argument_ptr =
            gemm_ptr->MakeArgumentPointer(static_cast<ADataType*>(a_device_buf.GetDeviceBuffer()),
                                          static_cast<BDataType*>(b_device_buf.GetDeviceBuffer()),
                                          static_cast<CDataType*>(c_device_buf.GetDeviceBuffer()),
                                          M,
                                          N,
                                          K,
                                          StrideA,
                                          StrideB,
                                          StrideC,
                                          ck::tensor_operation::element_wise::PassThrough{},
                                          ck::tensor_operation::element_wise::PassThrough{},
                                          ck::tensor_operation::element_wise::PassThrough{},
                                          BatchCount);

        auto invoker_ptr = gemm_ptr->MakeInvokerPointer();

        if(gemm_ptr->IsSupportedArgument(argument_ptr.get()))
        {
            std::string gemm_name = gemm_ptr->GetTypeString();

            float ave_time = invoker_ptr->Run(argument_ptr.get(), nrepeat);

            std::size_t flop = std::size_t(2) * BatchCount * M * N * K;

            std::size_t num_btype = (sizeof(ADataType) * M * K + sizeof(BDataType) * K * M +
                                     sizeof(CDataType) * M * N) *
                                    BatchCount;

            float tflops = static_cast<float>(flop) / 1.E9 / ave_time;

            float gb_per_sec = num_btype / 1.E6 / ave_time;

            std::cout << "Perf: " << ave_time << " ms, " << tflops << " TFlops, " << gb_per_sec
                      << " GB/s, " << gemm_name << std::endl;

            if(tflops > best_tflops)
            {
                best_gemm_name  = gemm_name;
                best_tflops     = tflops;
                best_ave_time   = ave_time;
                best_gb_per_sec = gb_per_sec;
            }

            if(do_verification)
            {
                c_device_buf.FromDevice(c_g_m_n_device_result.mData.data());

Chao Liu's avatar
Chao Liu committed
378
379
                pass = pass &&
                       ck::utils::check_err(c_g_m_n_device_result.mData, c_g_m_n_host_result.mData);
zjing14's avatar
zjing14 committed
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394

                if(do_log)
                {
                    LogRangeAsType<float>(std::cout << "a : ", a_g_m_k.mData, ",") << std::endl;
                    LogRangeAsType<float>(std::cout << "b: ", b_g_k_n.mData, ",") << std::endl;
                    LogRangeAsType<float>(std::cout << "c_host: ", c_g_m_n_host_result.mData, ",")
                        << std::endl;
                    LogRangeAsType<float>(
                        std::cout << "c_device: ", c_g_m_n_device_result.mData, ",")
                        << std::endl;
                }
            }
        }
        else
        {
Chao Liu's avatar
Chao Liu committed
395
            std::cout << "does not support this problem" << std::endl;
zjing14's avatar
zjing14 committed
396
397
398
399
400
        }
    }

    std::cout << "Best Perf: " << best_ave_time << " ms, " << best_tflops << " TFlops, "
              << best_gb_per_sec << " GB/s, " << best_gemm_name << std::endl;
401
402

    return pass;
zjing14's avatar
zjing14 committed
403
404
405
406
}

} // namespace profiler
} // namespace ck