profile_gemm_impl.hpp 14.9 KB
Newer Older
1
#pragma once
Chao Liu's avatar
Chao Liu committed
2
3
//#include "device_gemm_instance.hpp"
//#include "device_gemm_splitk_xdl_instance.hpp"
ltqin's avatar
ltqin committed
4
5
6
7
8
9

namespace ck {
namespace tensor_operation {
namespace device {
namespace device_gemm_instance {

Jing Zhang's avatar
Jing Zhang committed
10
11
12
13
14
using DeviceGemmNoOpPtr =
    ck::tensor_operation::device::DeviceGemmPtr<ck::tensor_operation::element_wise::PassThrough,
                                                ck::tensor_operation::element_wise::PassThrough,
                                                ck::tensor_operation::element_wise::PassThrough>;

Chao Liu's avatar
Chao Liu committed
15
#if 0
ltqin's avatar
ltqin committed
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
template <>
void add_device_gemm_instance<float,
                              float,
                              float,
                              ck::tensor_layout::gemm::RowMajor,
                              ck::tensor_layout::gemm::RowMajor,
                              ck::tensor_layout::gemm::RowMajor>(std::vector<DeviceGemmNoOpPtr>&);

template <>
void add_device_gemm_instance<float,
                              float,
                              float,
                              ck::tensor_layout::gemm::RowMajor,
                              ck::tensor_layout::gemm::ColumnMajor,
                              ck::tensor_layout::gemm::RowMajor>(std::vector<DeviceGemmNoOpPtr>&);

template <>
void add_device_gemm_instance<float,
                              float,
                              float,
                              ck::tensor_layout::gemm::ColumnMajor,
                              ck::tensor_layout::gemm::RowMajor,
                              ck::tensor_layout::gemm::RowMajor>(std::vector<DeviceGemmNoOpPtr>&);

template <>
void add_device_gemm_instance<float,
                              float,
                              float,
                              ck::tensor_layout::gemm::ColumnMajor,
                              ck::tensor_layout::gemm::ColumnMajor,
                              ck::tensor_layout::gemm::RowMajor>(std::vector<DeviceGemmNoOpPtr>&);

template <>
void add_device_gemm_instance<ck::half_t,
                              ck::half_t,
                              ck::half_t,
                              ck::tensor_layout::gemm::RowMajor,
                              ck::tensor_layout::gemm::RowMajor,
                              ck::tensor_layout::gemm::RowMajor>(std::vector<DeviceGemmNoOpPtr>&);

template <>
void add_device_gemm_instance<ck::half_t,
                              ck::half_t,
                              ck::half_t,
                              ck::tensor_layout::gemm::RowMajor,
                              ck::tensor_layout::gemm::ColumnMajor,
                              ck::tensor_layout::gemm::RowMajor>(std::vector<DeviceGemmNoOpPtr>&);

template <>
void add_device_gemm_instance<ck::half_t,
                              ck::half_t,
                              ck::half_t,
                              ck::tensor_layout::gemm::ColumnMajor,
                              ck::tensor_layout::gemm::RowMajor,
                              ck::tensor_layout::gemm::RowMajor>(std::vector<DeviceGemmNoOpPtr>&);

template <>
void add_device_gemm_instance<ck::half_t,
                              ck::half_t,
                              ck::half_t,
                              ck::tensor_layout::gemm::ColumnMajor,
                              ck::tensor_layout::gemm::ColumnMajor,
                              ck::tensor_layout::gemm::RowMajor>(std::vector<DeviceGemmNoOpPtr>&);
Chao Liu's avatar
Chao Liu committed
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
#else
void add_device_gemm_xdl_f16_f16_f16_mk_kn_mn_instances(std::vector<DeviceGemmNoOpPtr>&);
void add_device_gemm_xdl_f16_f16_f16_mk_nk_mn_instances(std::vector<DeviceGemmNoOpPtr>&);
void add_device_gemm_xdl_f16_f16_f16_km_kn_mn_instances(std::vector<DeviceGemmNoOpPtr>&);
void add_device_gemm_xdl_f16_f16_f16_km_nk_mn_instances(std::vector<DeviceGemmNoOpPtr>&);

void add_device_gemm_xdl_f32_f32_f32_mk_kn_mn_instances(std::vector<DeviceGemmNoOpPtr>&);
void add_device_gemm_xdl_f32_f32_f32_mk_nk_mn_instances(std::vector<DeviceGemmNoOpPtr>&);
void add_device_gemm_xdl_f32_f32_f32_km_kn_mn_instances(std::vector<DeviceGemmNoOpPtr>&);
void add_device_gemm_xdl_f32_f32_f32_km_nk_mn_instances(std::vector<DeviceGemmNoOpPtr>&);

void add_device_gemm_xdl_splitk_f32_f32_f32_mk_kn_mn_instances(std::vector<DeviceGemmNoOpPtr>&);
void add_device_gemm_xdl_splitk_f32_f32_f32_mk_nk_mn_instances(std::vector<DeviceGemmNoOpPtr>&);
void add_device_gemm_xdl_splitk_f32_f32_f32_km_kn_mn_instances(std::vector<DeviceGemmNoOpPtr>&);
void add_device_gemm_xdl_splitk_f32_f32_f32_km_nk_mn_instances(std::vector<DeviceGemmNoOpPtr>&);
#endif
ltqin's avatar
ltqin committed
95
96
97
98
99

} // namespace device_gemm_instance
} // namespace device
} // namespace tensor_operation
} // namespace ck
100
101
102
103
104
105
106
107
108
109

namespace ck {
namespace profiler {

template <typename ADataType,
          typename BDataType,
          typename CDataType,
          typename ALayout,
          typename BLayout,
          typename CLayout>
Chao Liu's avatar
Chao Liu committed
110
111
112
113
114
115
116
117
118
void profile_gemm_impl(int do_verification,
                       int init_method,
                       bool do_log,
                       int nrepeat,
                       int M,
                       int N,
                       int K,
                       int StrideA,
                       int StrideB,
119
                       int StrideC,
ltqin's avatar
ltqin committed
120
                       int KBatch = 1)
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
{
    auto f_host_tensor_descriptor =
        [](std::size_t row, std::size_t col, std::size_t stride, auto layout) {
            if(is_same<decltype(layout), tensor_layout::gemm::RowMajor>::value)
            {
                return HostTensorDescriptor(std::vector<std::size_t>({row, col}),
                                            std::vector<std::size_t>({stride, 1}));
            }
            else
            {
                return HostTensorDescriptor(std::vector<std::size_t>({row, col}),
                                            std::vector<std::size_t>({1, stride}));
            }
        };

    Tensor<ADataType> a_m_k(f_host_tensor_descriptor(M, K, StrideA, ALayout{}));
    Tensor<BDataType> b_k_n(f_host_tensor_descriptor(K, N, StrideB, BLayout{}));
    Tensor<CDataType> c_m_n_host_result(f_host_tensor_descriptor(M, N, StrideC, CLayout{}));
    Tensor<CDataType> c_m_n_device_result(f_host_tensor_descriptor(M, N, StrideC, CLayout{}));

    std::cout << "a_m_k: " << a_m_k.mDesc << std::endl;
    std::cout << "b_k_n: " << b_k_n.mDesc << std::endl;
    std::cout << "c_m_n: " << c_m_n_host_result.mDesc << std::endl;

ltqin's avatar
ltqin committed
145
    std::size_t num_thread = std::thread::hardware_concurrency();
146
147
148
149
    switch(init_method)
    {
    case 0: break;
    case 1:
ltqin's avatar
ltqin committed
150
151
        a_m_k.GenerateTensorValue(GeneratorTensor_2<ADataType>{-5, 5}, num_thread);
        b_k_n.GenerateTensorValue(GeneratorTensor_2<BDataType>{-5, 5}, num_thread);
152
153
        break;
    default:
ltqin's avatar
ltqin committed
154
155
        a_m_k.GenerateTensorValue(GeneratorTensor_3<ADataType>{0.0, 1.0}, num_thread);
        b_k_n.GenerateTensorValue(GeneratorTensor_3<BDataType>{-0.5, 0.5}, num_thread);
156
    }
ltqin's avatar
ltqin committed
157
158
    // set zero to c_device_buf
    c_m_n_device_result.GenerateTensorValue(GeneratorTensor_0<CDataType>{}, num_thread);
159
160
161

    if(do_verification)
    {
Chao Liu's avatar
Chao Liu committed
162
163
164
165
166
167
        host_gemm_mk_kn_mn(a_m_k,
                           b_k_n,
                           c_m_n_host_result,
                           ck::tensor_operation::element_wise::PassThrough{},
                           ck::tensor_operation::element_wise::PassThrough{},
                           ck::tensor_operation::element_wise::PassThrough{});
168
169
170
171
172
173
174
175
176
177
178
    }

    DeviceMem a_device_buf(sizeof(ADataType) * a_m_k.mDesc.GetElementSpace());
    DeviceMem b_device_buf(sizeof(BDataType) * b_k_n.mDesc.GetElementSpace());
    DeviceMem c_device_buf(sizeof(CDataType) * c_m_n_device_result.mDesc.GetElementSpace());

    a_device_buf.ToDevice(a_m_k.mData.data());
    b_device_buf.ToDevice(b_k_n.mData.data());
    c_device_buf.ToDevice(c_m_n_device_result.mData.data());

    // add device GEMM instances
Chao Liu's avatar
Chao Liu committed
179
    std::vector<ck::tensor_operation::device::device_gemm_instance::DeviceGemmNoOpPtr> gemm_ptrs;
180

ltqin's avatar
ltqin committed
181
    if(KBatch > 1 && is_same<ADataType, float>::value)
182
    {
Jing Zhang's avatar
Jing Zhang committed
183
184
185
        // ck::tensor_operation::device::device_gemm_instance::
        // add_device_splitk_gemm_instance<float, float, float, ALayout, BLayout, CLayout>(
        // gemm_ptrs);
186
187
188
    }
    else
    {
Jing Zhang's avatar
Jing Zhang committed
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253

        if(is_same<ADataType, float>::value && is_same<BDataType, float>::value &&
           is_same<CDataType, float>::value)
        {
            if(is_same<ALayout, tensor_layout::gemm::RowMajor>::value &&
               is_same<BLayout, tensor_layout::gemm::RowMajor>::value &&
               is_same<CLayout, tensor_layout::gemm::RowMajor>::value)
            {
                ck::tensor_operation::device::device_gemm_instance::
                    add_device_gemm_xdl_f32_f32_f32_mk_kn_mn_instances(gemm_ptrs);
            }
            else if(is_same<ALayout, tensor_layout::gemm::RowMajor>::value &&
                    is_same<BLayout, tensor_layout::gemm::ColumnMajor>::value &&
                    is_same<CLayout, tensor_layout::gemm::RowMajor>::value)
            {
                ck::tensor_operation::device::device_gemm_instance::
                    add_device_gemm_xdl_f32_f32_f32_mk_nk_mn_instances(gemm_ptrs);
            }
            else if(is_same<ALayout, tensor_layout::gemm::ColumnMajor>::value &&
                    is_same<BLayout, tensor_layout::gemm::RowMajor>::value &&
                    is_same<CLayout, tensor_layout::gemm::RowMajor>::value)
            {
                ck::tensor_operation::device::device_gemm_instance::
                    add_device_gemm_xdl_f32_f32_f32_km_kn_mn_instances(gemm_ptrs);
            }
            else if(is_same<ALayout, tensor_layout::gemm::ColumnMajor>::value &&
                    is_same<BLayout, tensor_layout::gemm::ColumnMajor>::value &&
                    is_same<CLayout, tensor_layout::gemm::RowMajor>::value)
            {
                ck::tensor_operation::device::device_gemm_instance::
                    add_device_gemm_xdl_f32_f32_f32_km_nk_mn_instances(gemm_ptrs);
            }
        }
        else if(is_same<ADataType, half_t>::value && is_same<BDataType, half_t>::value &&
                is_same<CDataType, half_t>::value)
        {
            if(is_same<ALayout, tensor_layout::gemm::RowMajor>::value &&
               is_same<BLayout, tensor_layout::gemm::RowMajor>::value &&
               is_same<CLayout, tensor_layout::gemm::RowMajor>::value)
            {
                ck::tensor_operation::device::device_gemm_instance::
                    add_device_gemm_xdl_f16_f16_f16_mk_kn_mn_instances(gemm_ptrs);
            }
            else if(is_same<ALayout, tensor_layout::gemm::RowMajor>::value &&
                    is_same<BLayout, tensor_layout::gemm::ColumnMajor>::value &&
                    is_same<CLayout, tensor_layout::gemm::RowMajor>::value)
            {
                ck::tensor_operation::device::device_gemm_instance::
                    add_device_gemm_xdl_f16_f16_f16_mk_nk_mn_instances(gemm_ptrs);
            }
            else if(is_same<ALayout, tensor_layout::gemm::ColumnMajor>::value &&
                    is_same<BLayout, tensor_layout::gemm::RowMajor>::value &&
                    is_same<CLayout, tensor_layout::gemm::RowMajor>::value)
            {
                ck::tensor_operation::device::device_gemm_instance::
                    add_device_gemm_xdl_f16_f16_f16_km_kn_mn_instances(gemm_ptrs);
            }
            else if(is_same<ALayout, tensor_layout::gemm::ColumnMajor>::value &&
                    is_same<BLayout, tensor_layout::gemm::ColumnMajor>::value &&
                    is_same<CLayout, tensor_layout::gemm::RowMajor>::value)
            {
                ck::tensor_operation::device::device_gemm_instance::
                    add_device_gemm_xdl_f16_f16_f16_km_nk_mn_instances(gemm_ptrs);
            }
        }
254
    }
255
256
257
258
259
260

    if(gemm_ptrs.size() <= 0)
    {
        throw std::runtime_error("wrong! no device GEMM instance found");
    }

Chao Liu's avatar
Chao Liu committed
261
    std::string best_gemm_name;
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
    float best_ave_time   = 0;
    float best_tflops     = 0;
    float best_gb_per_sec = 0;

    // profile device GEMM instances
    for(auto& gemm_ptr : gemm_ptrs)
    {
        auto argument_ptr =
            gemm_ptr->MakeArgumentPointer(static_cast<ADataType*>(a_device_buf.GetDeviceBuffer()),
                                          static_cast<BDataType*>(b_device_buf.GetDeviceBuffer()),
                                          static_cast<CDataType*>(c_device_buf.GetDeviceBuffer()),
                                          M,
                                          N,
                                          K,
                                          StrideA,
                                          StrideB,
Chao Liu's avatar
Chao Liu committed
278
279
280
                                          StrideC,
                                          ck::tensor_operation::element_wise::PassThrough{},
                                          ck::tensor_operation::element_wise::PassThrough{},
281
                                          ck::tensor_operation::element_wise::PassThrough{},
ltqin's avatar
ltqin committed
282
                                          KBatch);
283
284
285
286
287

        auto invoker_ptr = gemm_ptr->MakeInvokerPointer();

        if(gemm_ptr->IsSupportedArgument(argument_ptr.get()))
        {
Chao Liu's avatar
Chao Liu committed
288
289
            std::string gemm_name = gemm_ptr->GetTypeString();

290
291
292
            float ave_time = invoker_ptr->Run(argument_ptr.get(), nrepeat);

            std::size_t flop = std::size_t(2) * M * N * K;
Chao Liu's avatar
Chao Liu committed
293

294
295
296
297
298
299
300
301
            std::size_t num_btype =
                sizeof(ADataType) * M * K + sizeof(BDataType) * K * M + sizeof(CDataType) * M * N;

            float tflops = static_cast<float>(flop) / 1.E9 / ave_time;

            float gb_per_sec = num_btype / 1.E6 / ave_time;

            std::cout << "Perf: " << ave_time << " ms, " << tflops << " TFlops, " << gb_per_sec
Chao Liu's avatar
Chao Liu committed
302
                      << " GB/s, " << gemm_name << std::endl;
303
304
305

            if(tflops > best_tflops)
            {
Chao Liu's avatar
Chao Liu committed
306
                best_gemm_name  = gemm_name;
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
                best_tflops     = tflops;
                best_ave_time   = ave_time;
                best_gb_per_sec = gb_per_sec;
            }

            if(do_verification)
            {
                c_device_buf.FromDevice(c_m_n_device_result.mData.data());

                check_error(c_m_n_host_result, c_m_n_device_result);

                if(do_log)
                {
                    LogRangeAsType<float>(std::cout << "a : ", a_m_k.mData, ",") << std::endl;
                    LogRangeAsType<float>(std::cout << "b: ", b_k_n.mData, ",") << std::endl;
                    LogRangeAsType<float>(std::cout << "c_host  : ", c_m_n_host_result.mData, ",")
                        << std::endl;
                    LogRangeAsType<float>(std::cout << "c_device: ", c_m_n_device_result.mData, ",")
                        << std::endl;
                }
            }
        }
        else
        {
            std::cout << "this device GEMM instance does not support this GEMM problem"
                      << std::endl;
        }
    }

    std::cout << "Best Perf: " << best_ave_time << " ms, " << best_tflops << " TFlops, "
Chao Liu's avatar
Chao Liu committed
337
              << best_gb_per_sec << " GB/s, " << best_gemm_name << std::endl;
338
339
340
341
}

} // namespace profiler
} // namespace ck