profile_gemm_impl.hpp 11.2 KB
Newer Older
1
#pragma once
Chao Liu's avatar
Chao Liu committed
2
3
//#include "device_gemm_instance.hpp"
//#include "device_gemm_splitk_xdl_instance.hpp"
ltqin's avatar
ltqin committed
4
5
6
7
8
9

namespace ck {
namespace tensor_operation {
namespace device {
namespace device_gemm_instance {

Chao Liu's avatar
Chao Liu committed
10
#if 0
ltqin's avatar
ltqin committed
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
template <>
void add_device_gemm_instance<float,
                              float,
                              float,
                              ck::tensor_layout::gemm::RowMajor,
                              ck::tensor_layout::gemm::RowMajor,
                              ck::tensor_layout::gemm::RowMajor>(std::vector<DeviceGemmNoOpPtr>&);

template <>
void add_device_gemm_instance<float,
                              float,
                              float,
                              ck::tensor_layout::gemm::RowMajor,
                              ck::tensor_layout::gemm::ColumnMajor,
                              ck::tensor_layout::gemm::RowMajor>(std::vector<DeviceGemmNoOpPtr>&);

template <>
void add_device_gemm_instance<float,
                              float,
                              float,
                              ck::tensor_layout::gemm::ColumnMajor,
                              ck::tensor_layout::gemm::RowMajor,
                              ck::tensor_layout::gemm::RowMajor>(std::vector<DeviceGemmNoOpPtr>&);

template <>
void add_device_gemm_instance<float,
                              float,
                              float,
                              ck::tensor_layout::gemm::ColumnMajor,
                              ck::tensor_layout::gemm::ColumnMajor,
                              ck::tensor_layout::gemm::RowMajor>(std::vector<DeviceGemmNoOpPtr>&);

template <>
void add_device_gemm_instance<ck::half_t,
                              ck::half_t,
                              ck::half_t,
                              ck::tensor_layout::gemm::RowMajor,
                              ck::tensor_layout::gemm::RowMajor,
                              ck::tensor_layout::gemm::RowMajor>(std::vector<DeviceGemmNoOpPtr>&);

template <>
void add_device_gemm_instance<ck::half_t,
                              ck::half_t,
                              ck::half_t,
                              ck::tensor_layout::gemm::RowMajor,
                              ck::tensor_layout::gemm::ColumnMajor,
                              ck::tensor_layout::gemm::RowMajor>(std::vector<DeviceGemmNoOpPtr>&);

template <>
void add_device_gemm_instance<ck::half_t,
                              ck::half_t,
                              ck::half_t,
                              ck::tensor_layout::gemm::ColumnMajor,
                              ck::tensor_layout::gemm::RowMajor,
                              ck::tensor_layout::gemm::RowMajor>(std::vector<DeviceGemmNoOpPtr>&);

template <>
void add_device_gemm_instance<ck::half_t,
                              ck::half_t,
                              ck::half_t,
                              ck::tensor_layout::gemm::ColumnMajor,
                              ck::tensor_layout::gemm::ColumnMajor,
                              ck::tensor_layout::gemm::RowMajor>(std::vector<DeviceGemmNoOpPtr>&);
Chao Liu's avatar
Chao Liu committed
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
#else
void add_device_gemm_xdl_f16_f16_f16_mk_kn_mn_instances(std::vector<DeviceGemmNoOpPtr>&);
void add_device_gemm_xdl_f16_f16_f16_mk_nk_mn_instances(std::vector<DeviceGemmNoOpPtr>&);
void add_device_gemm_xdl_f16_f16_f16_km_kn_mn_instances(std::vector<DeviceGemmNoOpPtr>&);
void add_device_gemm_xdl_f16_f16_f16_km_nk_mn_instances(std::vector<DeviceGemmNoOpPtr>&);

void add_device_gemm_xdl_f32_f32_f32_mk_kn_mn_instances(std::vector<DeviceGemmNoOpPtr>&);
void add_device_gemm_xdl_f32_f32_f32_mk_nk_mn_instances(std::vector<DeviceGemmNoOpPtr>&);
void add_device_gemm_xdl_f32_f32_f32_km_kn_mn_instances(std::vector<DeviceGemmNoOpPtr>&);
void add_device_gemm_xdl_f32_f32_f32_km_nk_mn_instances(std::vector<DeviceGemmNoOpPtr>&);

void add_device_gemm_xdl_splitk_f32_f32_f32_mk_kn_mn_instances(std::vector<DeviceGemmNoOpPtr>&);
void add_device_gemm_xdl_splitk_f32_f32_f32_mk_nk_mn_instances(std::vector<DeviceGemmNoOpPtr>&);
void add_device_gemm_xdl_splitk_f32_f32_f32_km_kn_mn_instances(std::vector<DeviceGemmNoOpPtr>&);
void add_device_gemm_xdl_splitk_f32_f32_f32_km_nk_mn_instances(std::vector<DeviceGemmNoOpPtr>&);
#endif
ltqin's avatar
ltqin committed
90
91
92
93
94

} // namespace device_gemm_instance
} // namespace device
} // namespace tensor_operation
} // namespace ck
95
96
97
98
99
100
101
102
103
104

namespace ck {
namespace profiler {

template <typename ADataType,
          typename BDataType,
          typename CDataType,
          typename ALayout,
          typename BLayout,
          typename CLayout>
Chao Liu's avatar
Chao Liu committed
105
106
107
108
109
110
111
112
113
void profile_gemm_impl(int do_verification,
                       int init_method,
                       bool do_log,
                       int nrepeat,
                       int M,
                       int N,
                       int K,
                       int StrideA,
                       int StrideB,
114
                       int StrideC,
ltqin's avatar
ltqin committed
115
                       int KBatch = 1)
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
{
    auto f_host_tensor_descriptor =
        [](std::size_t row, std::size_t col, std::size_t stride, auto layout) {
            if(is_same<decltype(layout), tensor_layout::gemm::RowMajor>::value)
            {
                return HostTensorDescriptor(std::vector<std::size_t>({row, col}),
                                            std::vector<std::size_t>({stride, 1}));
            }
            else
            {
                return HostTensorDescriptor(std::vector<std::size_t>({row, col}),
                                            std::vector<std::size_t>({1, stride}));
            }
        };

    Tensor<ADataType> a_m_k(f_host_tensor_descriptor(M, K, StrideA, ALayout{}));
    Tensor<BDataType> b_k_n(f_host_tensor_descriptor(K, N, StrideB, BLayout{}));
    Tensor<CDataType> c_m_n_host_result(f_host_tensor_descriptor(M, N, StrideC, CLayout{}));
    Tensor<CDataType> c_m_n_device_result(f_host_tensor_descriptor(M, N, StrideC, CLayout{}));

    std::cout << "a_m_k: " << a_m_k.mDesc << std::endl;
    std::cout << "b_k_n: " << b_k_n.mDesc << std::endl;
    std::cout << "c_m_n: " << c_m_n_host_result.mDesc << std::endl;

ltqin's avatar
ltqin committed
140
    std::size_t num_thread = std::thread::hardware_concurrency();
141
142
143
144
    switch(init_method)
    {
    case 0: break;
    case 1:
ltqin's avatar
ltqin committed
145
146
        a_m_k.GenerateTensorValue(GeneratorTensor_2<ADataType>{-5, 5}, num_thread);
        b_k_n.GenerateTensorValue(GeneratorTensor_2<BDataType>{-5, 5}, num_thread);
147
148
        break;
    default:
ltqin's avatar
ltqin committed
149
150
        a_m_k.GenerateTensorValue(GeneratorTensor_3<ADataType>{0.0, 1.0}, num_thread);
        b_k_n.GenerateTensorValue(GeneratorTensor_3<BDataType>{-0.5, 0.5}, num_thread);
151
    }
ltqin's avatar
ltqin committed
152
153
    // set zero to c_device_buf
    c_m_n_device_result.GenerateTensorValue(GeneratorTensor_0<CDataType>{}, num_thread);
154
155
156

    if(do_verification)
    {
Chao Liu's avatar
Chao Liu committed
157
158
159
160
161
162
        host_gemm_mk_kn_mn(a_m_k,
                           b_k_n,
                           c_m_n_host_result,
                           ck::tensor_operation::element_wise::PassThrough{},
                           ck::tensor_operation::element_wise::PassThrough{},
                           ck::tensor_operation::element_wise::PassThrough{});
163
164
165
166
167
168
169
170
171
172
173
    }

    DeviceMem a_device_buf(sizeof(ADataType) * a_m_k.mDesc.GetElementSpace());
    DeviceMem b_device_buf(sizeof(BDataType) * b_k_n.mDesc.GetElementSpace());
    DeviceMem c_device_buf(sizeof(CDataType) * c_m_n_device_result.mDesc.GetElementSpace());

    a_device_buf.ToDevice(a_m_k.mData.data());
    b_device_buf.ToDevice(b_k_n.mData.data());
    c_device_buf.ToDevice(c_m_n_device_result.mData.data());

    // add device GEMM instances
Chao Liu's avatar
Chao Liu committed
174
    std::vector<ck::tensor_operation::device::device_gemm_instance::DeviceGemmNoOpPtr> gemm_ptrs;
175

ltqin's avatar
ltqin committed
176
    if(KBatch > 1 && is_same<ADataType, float>::value)
177
178
179
180
181
182
183
184
185
186
187
    {
        ck::tensor_operation::device::device_gemm_instance::
            add_device_splitk_gemm_instance<float, float, float, ALayout, BLayout, CLayout>(
                gemm_ptrs);
    }
    else
    {
        ck::tensor_operation::device::device_gemm_instance::
            add_device_gemm_instance<ADataType, BDataType, CDataType, ALayout, BLayout, CLayout>(
                gemm_ptrs);
    }
188
189
190
191
192
193

    if(gemm_ptrs.size() <= 0)
    {
        throw std::runtime_error("wrong! no device GEMM instance found");
    }

Chao Liu's avatar
Chao Liu committed
194
    std::string best_gemm_name;
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
    float best_ave_time   = 0;
    float best_tflops     = 0;
    float best_gb_per_sec = 0;

    // profile device GEMM instances
    for(auto& gemm_ptr : gemm_ptrs)
    {
        auto argument_ptr =
            gemm_ptr->MakeArgumentPointer(static_cast<ADataType*>(a_device_buf.GetDeviceBuffer()),
                                          static_cast<BDataType*>(b_device_buf.GetDeviceBuffer()),
                                          static_cast<CDataType*>(c_device_buf.GetDeviceBuffer()),
                                          M,
                                          N,
                                          K,
                                          StrideA,
                                          StrideB,
Chao Liu's avatar
Chao Liu committed
211
212
213
                                          StrideC,
                                          ck::tensor_operation::element_wise::PassThrough{},
                                          ck::tensor_operation::element_wise::PassThrough{},
214
                                          ck::tensor_operation::element_wise::PassThrough{},
ltqin's avatar
ltqin committed
215
                                          KBatch);
216
217
218
219
220

        auto invoker_ptr = gemm_ptr->MakeInvokerPointer();

        if(gemm_ptr->IsSupportedArgument(argument_ptr.get()))
        {
Chao Liu's avatar
Chao Liu committed
221
222
            std::string gemm_name = gemm_ptr->GetTypeString();

223
224
225
            float ave_time = invoker_ptr->Run(argument_ptr.get(), nrepeat);

            std::size_t flop = std::size_t(2) * M * N * K;
Chao Liu's avatar
Chao Liu committed
226

227
228
229
230
231
232
233
234
            std::size_t num_btype =
                sizeof(ADataType) * M * K + sizeof(BDataType) * K * M + sizeof(CDataType) * M * N;

            float tflops = static_cast<float>(flop) / 1.E9 / ave_time;

            float gb_per_sec = num_btype / 1.E6 / ave_time;

            std::cout << "Perf: " << ave_time << " ms, " << tflops << " TFlops, " << gb_per_sec
Chao Liu's avatar
Chao Liu committed
235
                      << " GB/s, " << gemm_name << std::endl;
236
237
238

            if(tflops > best_tflops)
            {
Chao Liu's avatar
Chao Liu committed
239
                best_gemm_name  = gemm_name;
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
                best_tflops     = tflops;
                best_ave_time   = ave_time;
                best_gb_per_sec = gb_per_sec;
            }

            if(do_verification)
            {
                c_device_buf.FromDevice(c_m_n_device_result.mData.data());

                check_error(c_m_n_host_result, c_m_n_device_result);

                if(do_log)
                {
                    LogRangeAsType<float>(std::cout << "a : ", a_m_k.mData, ",") << std::endl;
                    LogRangeAsType<float>(std::cout << "b: ", b_k_n.mData, ",") << std::endl;
                    LogRangeAsType<float>(std::cout << "c_host  : ", c_m_n_host_result.mData, ",")
                        << std::endl;
                    LogRangeAsType<float>(std::cout << "c_device: ", c_m_n_device_result.mData, ",")
                        << std::endl;
                }
            }
        }
        else
        {
            std::cout << "this device GEMM instance does not support this GEMM problem"
                      << std::endl;
        }
    }

    std::cout << "Best Perf: " << best_ave_time << " ms, " << best_tflops << " TFlops, "
Chao Liu's avatar
Chao Liu committed
270
              << best_gb_per_sec << " GB/s, " << best_gemm_name << std::endl;
271
272
273
274
}

} // namespace profiler
} // namespace ck