convnd_fwd_common.hpp 8.64 KB
Newer Older
Chao Liu's avatar
Chao Liu committed
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
// SPDX-License-Identifier: MIT
// Copyright (c) 2018-2022, Advanced Micro Devices, Inc. All rights reserved.

#include <cstdlib>
#include <iostream>
#include <numeric>
#include <type_traits>

#include "ck/ck.hpp"
#include "ck/tensor_operation/gpu/device/tensor_layout.hpp"
#include "ck/tensor_operation/gpu/device/device_convnd_fwd_nwc_kxc_nwk_xdl.hpp"
#include "ck/tensor_operation/gpu/element/element_wise_operation.hpp"

#include "ck/library/utility/check_err.hpp"
#include "ck/library/utility/convolution_parameter.hpp"
#include "ck/library/utility/device_memory.hpp"
#include "ck/library/utility/host_tensor.hpp"
#include "ck/library/utility/host_tensor_generator.hpp"
#include "ck/library/reference_tensor_operation/cpu/reference_conv_fwd.hpp"

Chao Liu's avatar
Chao Liu committed
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
#include "ck/library/utility/convolution_parameter.hpp"

ck::tensor_operation::device::ConvParams
parse_conv_params(int num_dim_spatial, int arg_idx, char* const argv[])
{
    ck::tensor_operation::device::ConvParams params;

    params.num_dim_spatial_ = num_dim_spatial;
    params.N_               = std::stoi(argv[arg_idx++]);
    params.K_               = std::stoi(argv[arg_idx++]);
    params.C_               = std::stoi(argv[arg_idx++]);

    params.filter_spatial_lengths_.resize(num_dim_spatial);
    for(int i = 0; i < num_dim_spatial; ++i)
    {
        params.filter_spatial_lengths_[i] = std::stoi(argv[arg_idx++]);
    }
    params.input_spatial_lengths_.resize(num_dim_spatial);
    for(int i = 0; i < num_dim_spatial; ++i)
    {
        params.input_spatial_lengths_[i] = std::stoi(argv[arg_idx++]);
    }
    params.conv_filter_strides_.resize(num_dim_spatial);
    for(int i = 0; i < num_dim_spatial; ++i)
    {
        params.conv_filter_strides_[i] = std::stoi(argv[arg_idx++]);
    }
    params.conv_filter_dilations_.resize(num_dim_spatial);
    for(int i = 0; i < num_dim_spatial; ++i)
    {
        params.conv_filter_dilations_[i] = std::stoi(argv[arg_idx++]);
    }
    params.input_left_pads_.resize(num_dim_spatial);
    for(int i = 0; i < num_dim_spatial; ++i)
    {
        params.input_left_pads_[i] = std::stoi(argv[arg_idx++]);
    }
    params.input_right_pads_.resize(num_dim_spatial);
    for(int i = 0; i < num_dim_spatial; ++i)
    {
        params.input_right_pads_[i] = std::stoi(argv[arg_idx++]);
    }

    return params;
}

void print_helper_msg()
{
    std::cout << "arg1: verification (0=no, 1=yes)\n"
              << "arg2: initialization (0=no init, 1=integer value, 2=decimal value)\n"
              << "arg3: time kernel (0=n0, 1=yes)\n"
              << "arg4: N spatial dimensions (default 2)\n"
              << "Following arguments (depending on number of spatial dims):\n"
              << " N, K, C, \n"
              << " <filter spatial dimensions>, (ie Y, X for 2D)\n"
              << " <input image spatial dimensions>, (ie Hi, Wi for 2D)\n"
              << " <strides>, (ie Sy, Sx for 2D)\n"
              << " <dilations>, (ie Dy, Dx for 2D)\n"
              << " <left padding>, (ie LeftPy, LeftPx for 2D)\n"
              << " <right padding>, (ie RightPy, RightPx for 2D)\n"
              << std::endl;
}
Chao Liu's avatar
Chao Liu committed
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209

template <ck::index_t NDimSpatial,
          typename InDataType,
          typename WeiDataType,
          typename OutDataType,
          typename AccDataType,
          typename InElementOp,
          typename WeiElementOp,
          typename OutElementOp,
          typename DeviceConvNDFwdInstance,
          typename ReferenceConvNDFwdInstance>
int run_conv_fwd(const ck::tensor_operation::device::ConvParams& params,
                 bool do_verification,
                 int init_method,
                 bool time_kernel)
{
    auto f_nchw_host_tensor_descriptor =
        [](ck::index_t n, ck::index_t c, std::vector<ck::index_t> spatial_lengths) {
            std::vector<std::size_t> nhwc_lengths{static_cast<std::size_t>(n),
                                                  static_cast<std::size_t>(c)};
            nhwc_lengths.insert(
                nhwc_lengths.begin() + 1, spatial_lengths.begin(), spatial_lengths.end());

            return transpose_host_tensor_descriptor_given_new2old(
                HostTensorDescriptor(nhwc_lengths), std::vector<std::size_t>({0, 3, 1, 2}));
        };

    Tensor<InDataType> input(
        f_nchw_host_tensor_descriptor(params.N_, params.C_, params.input_spatial_lengths_));
    Tensor<InDataType> weights(
        f_nchw_host_tensor_descriptor(params.K_, params.C_, params.filter_spatial_lengths_));
    Tensor<InDataType> host_output(
        f_nchw_host_tensor_descriptor(params.N_, params.K_, params.GetOutputSpatialLengths()));
    Tensor<InDataType> device_output(
        f_nchw_host_tensor_descriptor(params.N_, params.K_, params.GetOutputSpatialLengths()));

    std::cout << "input: " << input.mDesc << std::endl;
    std::cout << "weights: " << weights.mDesc << std::endl;
    std::cout << "output: " << host_output.mDesc << std::endl;

    switch(init_method)
    {
    case 0: break;
    case 1:
        input.GenerateTensorValue(GeneratorTensor_2<InDataType>{-5, 5});
        weights.GenerateTensorValue(GeneratorTensor_2<WeiDataType>{-5, 5});
        break;
    default:
        input.GenerateTensorValue(GeneratorTensor_3<InDataType>{0.0, 1.0});
        weights.GenerateTensorValue(GeneratorTensor_3<WeiDataType>{-0.5, 0.5});
    }

    DeviceMem in_device_buf(sizeof(InDataType) * input.mDesc.GetElementSpace());
    DeviceMem wei_device_buf(sizeof(WeiDataType) * weights.mDesc.GetElementSpace());
    DeviceMem out_device_buf(sizeof(OutDataType) * device_output.mDesc.GetElementSpace());

    in_device_buf.ToDevice(input.mData.data());
    wei_device_buf.ToDevice(weights.mData.data());

    // do GEMM
    auto conv     = DeviceConvNDFwdInstance{};
    auto invoker  = conv.MakeInvoker();
    auto argument = conv.MakeArgument(static_cast<InDataType*>(in_device_buf.GetDeviceBuffer()),
                                      static_cast<WeiDataType*>(wei_device_buf.GetDeviceBuffer()),
                                      static_cast<OutDataType*>(out_device_buf.GetDeviceBuffer()),
                                      params.N_,
                                      params.K_,
                                      params.C_,
                                      params.input_spatial_lengths_,
                                      params.filter_spatial_lengths_,
                                      params.GetOutputSpatialLengths(),
                                      params.conv_filter_strides_,
                                      params.conv_filter_dilations_,
                                      params.input_left_pads_,
                                      params.input_right_pads_,
                                      InElementOp{},
                                      WeiElementOp{},
                                      OutElementOp{});

    if(!conv.IsSupportedArgument(argument))
    {
        throw std::runtime_error(
            "wrong! device_conv with the specified compilation parameters does "
            "not support this Conv problem");
    }

    float ave_time = invoker.Run(argument, StreamConfig{nullptr, time_kernel});

    std::size_t flop      = params.GetFlops();
    std::size_t num_btype = params.GetByte<InDataType, WeiDataType, OutDataType>();

    float tflops     = static_cast<float>(flop) / 1.E9 / ave_time;
    float gb_per_sec = num_btype / 1.E6 / ave_time;
    std::cout << "Perf: " << ave_time << " ms, " << tflops << " TFlops, " << gb_per_sec << " GB/s, "
              << conv.GetTypeString() << std::endl;

    if(do_verification)
    {
        auto ref_conv = ReferenceConvNDFwdInstance();

        auto ref_invoker  = ref_conv.MakeInvoker();
        auto ref_argument = ref_conv.MakeArgument(input,
                                                  weights,
                                                  host_output,
                                                  params.conv_filter_strides_,
                                                  params.conv_filter_dilations_,
                                                  params.input_left_pads_,
                                                  params.input_right_pads_,
                                                  InElementOp{},
                                                  WeiElementOp{},
                                                  OutElementOp{});

        ref_invoker.Run(ref_argument);

        out_device_buf.FromDevice(device_output.mData.data());

        return ck::utils::check_err(host_output.mData,
                                    device_output.mData,
                                    "Error: incorrect results!",
                                    1e-5f,
                                    1e-4f)
                   ? 0
                   : 1;
    }

    return 0;
}