Skip to content
GitLab
Menu
Projects
Groups
Snippets
Loading...
Help
Help
Support
Community forum
Keyboard shortcuts
?
Submit feedback
Contribute to GitLab
Sign in / Register
Toggle navigation
Menu
Open sidebar
gaoqiong
composable_kernel
Commits
21892202
Commit
21892202
authored
Jul 12, 2022
by
Chao Liu
Browse files
update example
parent
d789a53d
Changes
8
Hide whitespace changes
Inline
Side-by-side
Showing
8 changed files
with
385 additions
and
1113 deletions
+385
-1113
example/09_convnd_fwd/CMakeLists.txt
example/09_convnd_fwd/CMakeLists.txt
+2
-1
example/09_convnd_fwd/convnd_fwd_common.hpp
example/09_convnd_fwd/convnd_fwd_common.hpp
+62
-4
example/09_convnd_fwd/convnd_fwd_xdl_bf16.cpp
example/09_convnd_fwd/convnd_fwd_xdl_bf16.cpp
+52
-147
example/09_convnd_fwd/convnd_fwd_xdl_fp16.cpp
example/09_convnd_fwd/convnd_fwd_xdl_fp16.cpp
+2
-13
example/09_convnd_fwd/convnd_fwd_xdl_fp32.cpp
example/09_convnd_fwd/convnd_fwd_xdl_fp32.cpp
+88
-292
example/09_convnd_fwd/convnd_fwd_xdl_fp64.cpp
example/09_convnd_fwd/convnd_fwd_xdl_fp64.cpp
+91
-296
example/09_convnd_fwd/convnd_fwd_xdl_int8.cpp
example/09_convnd_fwd/convnd_fwd_xdl_int8.cpp
+88
-290
example/09_convnd_fwd/parse_conv_parameter.hpp
example/09_convnd_fwd/parse_conv_parameter.hpp
+0
-70
No files found.
example/09_convnd_fwd/CMakeLists.txt
View file @
21892202
add_example_executable
(
example_convnd_fwd_xdl_fp32 convnd_fwd_xdl_fp32.cpp
)
add_example_executable
(
example_convnd_fwd_xdl_fp32 convnd_fwd_xdl_fp32.cpp
)
add_example_executable
(
example_convnd_fwd_xdl_int8 convnd_fwd_xdl_int8.cpp
)
add_example_executable
(
example_convnd_fwd_xdl_fp16 convnd_fwd_xdl_fp16.cpp
)
add_example_executable
(
example_convnd_fwd_xdl_fp16 convnd_fwd_xdl_fp16.cpp
)
add_example_executable
(
example_convnd_fwd_xdl_bf16 convnd_fwd_xdl_bf16.cpp
)
add_example_executable
(
example_convnd_fwd_xdl_int8 convnd_fwd_xdl_int8.cpp
)
# FIXME: re-enable this exampe as test when SWDEV-335738 is fixed
# FIXME: re-enable this exampe as test when SWDEV-335738 is fixed
add_example_executable_no_testing
(
example_convnd_fwd_xdl_fp64 convnd_fwd_xdl_fp64.cpp
)
add_example_executable_no_testing
(
example_convnd_fwd_xdl_fp64 convnd_fwd_xdl_fp64.cpp
)
example/09_convnd_fwd/convnd_fwd_common.hpp
View file @
21892202
...
@@ -18,16 +18,74 @@
...
@@ -18,16 +18,74 @@
#include "ck/library/utility/host_tensor_generator.hpp"
#include "ck/library/utility/host_tensor_generator.hpp"
#include "ck/library/reference_tensor_operation/cpu/reference_conv_fwd.hpp"
#include "ck/library/reference_tensor_operation/cpu/reference_conv_fwd.hpp"
#include "parse_conv_parameter.hpp"
#include "ck/library/utility/convolution_parameter.hpp"
ck
::
tensor_operation
::
device
::
ConvParams
parse_conv_params
(
int
num_dim_spatial
,
int
arg_idx
,
char
*
const
argv
[])
{
ck
::
tensor_operation
::
device
::
ConvParams
params
;
params
.
num_dim_spatial_
=
num_dim_spatial
;
params
.
N_
=
std
::
stoi
(
argv
[
arg_idx
++
]);
params
.
K_
=
std
::
stoi
(
argv
[
arg_idx
++
]);
params
.
C_
=
std
::
stoi
(
argv
[
arg_idx
++
]);
params
.
filter_spatial_lengths_
.
resize
(
num_dim_spatial
);
for
(
int
i
=
0
;
i
<
num_dim_spatial
;
++
i
)
{
params
.
filter_spatial_lengths_
[
i
]
=
std
::
stoi
(
argv
[
arg_idx
++
]);
}
params
.
input_spatial_lengths_
.
resize
(
num_dim_spatial
);
for
(
int
i
=
0
;
i
<
num_dim_spatial
;
++
i
)
{
params
.
input_spatial_lengths_
[
i
]
=
std
::
stoi
(
argv
[
arg_idx
++
]);
}
params
.
conv_filter_strides_
.
resize
(
num_dim_spatial
);
for
(
int
i
=
0
;
i
<
num_dim_spatial
;
++
i
)
{
params
.
conv_filter_strides_
[
i
]
=
std
::
stoi
(
argv
[
arg_idx
++
]);
}
params
.
conv_filter_dilations_
.
resize
(
num_dim_spatial
);
for
(
int
i
=
0
;
i
<
num_dim_spatial
;
++
i
)
{
params
.
conv_filter_dilations_
[
i
]
=
std
::
stoi
(
argv
[
arg_idx
++
]);
}
params
.
input_left_pads_
.
resize
(
num_dim_spatial
);
for
(
int
i
=
0
;
i
<
num_dim_spatial
;
++
i
)
{
params
.
input_left_pads_
[
i
]
=
std
::
stoi
(
argv
[
arg_idx
++
]);
}
params
.
input_right_pads_
.
resize
(
num_dim_spatial
);
for
(
int
i
=
0
;
i
<
num_dim_spatial
;
++
i
)
{
params
.
input_right_pads_
[
i
]
=
std
::
stoi
(
argv
[
arg_idx
++
]);
}
return
params
;
}
void
print_helper_msg
()
{
std
::
cout
<<
"arg1: verification (0=no, 1=yes)
\n
"
<<
"arg2: initialization (0=no init, 1=integer value, 2=decimal value)
\n
"
<<
"arg3: time kernel (0=n0, 1=yes)
\n
"
<<
"arg4: N spatial dimensions (default 2)
\n
"
<<
"Following arguments (depending on number of spatial dims):
\n
"
<<
" N, K, C,
\n
"
<<
" <filter spatial dimensions>, (ie Y, X for 2D)
\n
"
<<
" <input image spatial dimensions>, (ie Hi, Wi for 2D)
\n
"
<<
" <strides>, (ie Sy, Sx for 2D)
\n
"
<<
" <dilations>, (ie Dy, Dx for 2D)
\n
"
<<
" <left padding>, (ie LeftPy, LeftPx for 2D)
\n
"
<<
" <right padding>, (ie RightPy, RightPx for 2D)
\n
"
<<
std
::
endl
;
}
template
<
ck
::
index_t
NDimSpatial
,
template
<
ck
::
index_t
NDimSpatial
,
typename
InDataType
,
typename
InDataType
,
typename
WeiDataType
,
typename
WeiDataType
,
typename
OutDataType
,
typename
OutDataType
,
typename
AccDataType
,
typename
AccDataType
,
typename
InLayout
,
typename
WeiLayout
,
typename
OutLayout
,
typename
InElementOp
,
typename
InElementOp
,
typename
WeiElementOp
,
typename
WeiElementOp
,
typename
OutElementOp
,
typename
OutElementOp
,
...
...
example/09_convnd_fwd/convnd_fwd_xdl_bf16.cpp
View file @
21892202
// SPDX-License-Identifier: MIT
// SPDX-License-Identifier: MIT
// Copyright (c) 2018-2022, Advanced Micro Devices, Inc. All rights reserved.
// Copyright (c) 2018-2022, Advanced Micro Devices, Inc. All rights reserved.
#include <cstdlib>
#include "convnd_fwd_common.hpp"
#include <iostream>
#include <numeric>
#include <type_traits>
#include "ck/ck.hpp"
#include "ck/tensor_operation/gpu/device/tensor_layout.hpp"
#include "ck/tensor_operation/gpu/device/device_convnd_fwd_nwc_kxc_nwk_xdl.hpp"
#include "ck/tensor_operation/gpu/element/element_wise_operation.hpp"
#include "ck/library/utility/check_err.hpp"
#include "ck/library/utility/convolution_parameter.hpp"
#include "ck/library/utility/device_memory.hpp"
#include "ck/library/utility/host_tensor.hpp"
#include "ck/library/utility/host_tensor_generator.hpp"
#include "ck/library/reference_tensor_operation/cpu/reference_conv_fwd.hpp"
#include "parse_conv_parameter.hpp"
using
InDataType
=
ck
::
bhalf_t
;
using
InDataType
=
ck
::
bhalf_t
;
using
WeiDataType
=
ck
::
bhalf_t
;
using
WeiDataType
=
ck
::
bhalf_t
;
...
@@ -28,10 +11,6 @@ using AccDataType = float;
...
@@ -28,10 +11,6 @@ using AccDataType = float;
template
<
ck
::
index_t
...
Is
>
template
<
ck
::
index_t
...
Is
>
using
S
=
ck
::
Sequence
<
Is
...
>
;
using
S
=
ck
::
Sequence
<
Is
...
>
;
using
InLayout
=
ck
::
tensor_layout
::
convolution
::
NHWC
;
using
WeiLayout
=
ck
::
tensor_layout
::
convolution
::
KYXC
;
using
OutLayout
=
ck
::
tensor_layout
::
convolution
::
NHWK
;
using
InElementOp
=
ck
::
tensor_operation
::
element_wise
::
PassThrough
;
using
InElementOp
=
ck
::
tensor_operation
::
element_wise
::
PassThrough
;
using
WeiElementOp
=
ck
::
tensor_operation
::
element_wise
::
PassThrough
;
using
WeiElementOp
=
ck
::
tensor_operation
::
element_wise
::
PassThrough
;
using
OutElementOp
=
ck
::
tensor_operation
::
element_wise
::
PassThrough
;
using
OutElementOp
=
ck
::
tensor_operation
::
element_wise
::
PassThrough
;
...
@@ -87,151 +66,77 @@ using ReferenceConvNDFwdInstance = ck::tensor_operation::host::ReferenceConvFwd<
...
@@ -87,151 +66,77 @@ using ReferenceConvNDFwdInstance = ck::tensor_operation::host::ReferenceConvFwd<
int
main
(
int
argc
,
char
*
argv
[])
int
main
(
int
argc
,
char
*
argv
[])
{
{
print_helper_msg
();
bool
do_verification
=
true
;
bool
do_verification
=
true
;
int
init_method
=
1
;
int
init_method
=
1
;
bool
time_kernel
=
tru
e
;
bool
time_kernel
=
fals
e
;
int
num_dim_spatial
=
2
;
int
num_dim_spatial
=
2
;
ck
::
tensor_operation
::
device
::
ConvParams
params
;
ck
::
tensor_operation
::
device
::
ConvParams
params
;
if
(
argc
>=
5
)
if
(
argc
==
1
)
{
// use default
}
else
if
(
argc
==
4
)
{
{
do_verification
=
std
::
stoi
(
argv
[
1
]);
do_verification
=
std
::
stoi
(
argv
[
1
]);
init_method
=
std
::
stoi
(
argv
[
2
]);
init_method
=
std
::
stoi
(
argv
[
2
]);
time_kernel
=
std
::
stoi
(
argv
[
3
]);
time_kernel
=
std
::
stoi
(
argv
[
3
]);
num_dim_spatial
=
std
::
stoi
(
argv
[
4
]);
}
}
else
if
(
argc
>=
6
)
{
{
do_verification
=
std
::
stoi
(
argv
[
1
]);
init_method
=
std
::
stoi
(
argv
[
2
]);
time_kernel
=
std
::
stoi
(
argv
[
3
]);
num_dim_spatial
=
std
::
stoi
(
argv
[
4
]);
params
=
parse_conv_params
(
num_dim_spatial
,
argc
,
argv
);
params
=
parse_conv_params
(
num_dim_spatial
,
argc
,
argv
);
}
}
auto
f_nchw_host_tensor_descriptor
=
if
(
num_dim_spatial
==
1
)
[](
ck
::
index_t
n
,
ck
::
index_t
c
,
std
::
vector
<
ck
::
index_t
>
spatial_lengths
)
{
std
::
vector
<
std
::
size_t
>
nhwc_lengths
{
static_cast
<
std
::
size_t
>
(
n
),
static_cast
<
std
::
size_t
>
(
c
)};
nhwc_lengths
.
insert
(
nhwc_lengths
.
begin
()
+
1
,
spatial_lengths
.
begin
(),
spatial_lengths
.
end
());
return
transpose_host_tensor_descriptor_given_new2old
(
HostTensorDescriptor
(
nhwc_lengths
),
std
::
vector
<
std
::
size_t
>
({
0
,
3
,
1
,
2
}));
};
Tensor
<
InDataType
>
input
(
f_nchw_host_tensor_descriptor
(
params
.
N_
,
params
.
C_
,
params
.
input_spatial_lengths_
));
Tensor
<
InDataType
>
weights
(
f_nchw_host_tensor_descriptor
(
params
.
K_
,
params
.
C_
,
params
.
filter_spatial_lengths_
));
Tensor
<
InDataType
>
host_output
(
f_nchw_host_tensor_descriptor
(
params
.
N_
,
params
.
K_
,
params
.
GetOutputSpatialLengths
()));
Tensor
<
InDataType
>
device_output
(
f_nchw_host_tensor_descriptor
(
params
.
N_
,
params
.
K_
,
params
.
GetOutputSpatialLengths
()));
std
::
cout
<<
"input: "
<<
input
.
mDesc
<<
std
::
endl
;
std
::
cout
<<
"weights: "
<<
weights
.
mDesc
<<
std
::
endl
;
std
::
cout
<<
"output: "
<<
host_output
.
mDesc
<<
std
::
endl
;
switch
(
init_method
)
{
{
case
0
:
break
;
return
run_conv_fwd
<
1
,
case
1
:
InDataType
,
input
.
GenerateTensorValue
(
GeneratorTensor_2
<
InDataType
>
{
-
5
,
5
});
WeiDataType
,
weights
.
GenerateTensorValue
(
GeneratorTensor_2
<
WeiDataType
>
{
-
5
,
5
});
OutDataType
,
break
;
AccDataType
,
default:
InElementOp
,
input
.
GenerateTensorValue
(
GeneratorTensor_3
<
InDataType
>
{
0.0
,
1.0
});
WeiElementOp
,
weights
.
GenerateTensorValue
(
GeneratorTensor_3
<
WeiDataType
>
{
-
0.5
,
0.5
});
OutElementOp
,
DeviceConvNDFwdInstance
<
1
>
,
ReferenceConvNDFwdInstance
<
1
>>
(
params
,
do_verification
,
init_method
,
time_kernel
);
}
}
else
if
(
num_dim_spatial
==
2
)
DeviceMem
in_device_buf
(
sizeof
(
InDataType
)
*
input
.
mDesc
.
GetElementSpace
());
DeviceMem
wei_device_buf
(
sizeof
(
WeiDataType
)
*
weights
.
mDesc
.
GetElementSpace
());
DeviceMem
out_device_buf
(
sizeof
(
OutDataType
)
*
device_output
.
mDesc
.
GetElementSpace
());
in_device_buf
.
ToDevice
(
input
.
mData
.
data
());
wei_device_buf
.
ToDevice
(
weights
.
mData
.
data
());
// do Conv
auto
conv
=
DeviceConvNDFwdInstance
<
2
>
{};
auto
invoker
=
conv
.
MakeInvoker
();
auto
argument
=
conv
.
MakeArgument
(
static_cast
<
InDataType
*>
(
in_device_buf
.
GetDeviceBuffer
()),
static_cast
<
WeiDataType
*>
(
wei_device_buf
.
GetDeviceBuffer
()),
static_cast
<
OutDataType
*>
(
out_device_buf
.
GetDeviceBuffer
()),
params
.
N_
,
params
.
K_
,
params
.
C_
,
params
.
input_spatial_lengths_
,
params
.
filter_spatial_lengths_
,
params
.
GetOutputSpatialLengths
(),
params
.
conv_filter_strides_
,
params
.
conv_filter_dilations_
,
params
.
input_left_pads_
,
params
.
input_right_pads_
,
InElementOp
{},
WeiElementOp
{},
OutElementOp
{});
if
(
!
conv
.
IsSupportedArgument
(
argument
))
{
{
throw
std
::
runtime_error
(
return
run_conv_fwd
<
2
,
"wrong! device_conv with the specified compilation parameters does "
InDataType
,
"not support this Conv problem"
);
WeiDataType
,
OutDataType
,
AccDataType
,
InElementOp
,
WeiElementOp
,
OutElementOp
,
DeviceConvNDFwdInstance
<
2
>
,
ReferenceConvNDFwdInstance
<
2
>>
(
params
,
do_verification
,
init_method
,
time_kernel
);
}
}
else
if
(
num_dim_spatial
==
3
)
float
ave_time
=
invoker
.
Run
(
argument
,
StreamConfig
{
nullptr
,
time_kernel
});
std
::
size_t
flop
=
params
.
GetFlops
();
std
::
size_t
num_btype
=
params
.
GetByte
<
InDataType
,
WeiDataType
,
OutDataType
>
();
float
tflops
=
static_cast
<
float
>
(
flop
)
/
1.E9
/
ave_time
;
float
gb_per_sec
=
num_btype
/
1.E6
/
ave_time
;
std
::
cout
<<
"Perf: "
<<
ave_time
<<
" ms, "
<<
tflops
<<
" TFlops, "
<<
gb_per_sec
<<
" GB/s, "
<<
conv
.
GetTypeString
()
<<
std
::
endl
;
if
(
do_verification
)
{
{
auto
verify_f
=
[
&
input
,
&
weights
,
&
host_output
,
&
params
,
&
out_device_buf
,
&
device_output
](
return
run_conv_fwd
<
3
,
const
auto
&
ref_conv
)
{
InDataType
,
auto
ref_invoker
=
ref_conv
.
MakeInvoker
();
WeiDataType
,
auto
ref_argument
=
ref_conv
.
MakeArgument
(
input
,
OutDataType
,
weights
,
AccDataType
,
host_output
,
InElementOp
,
params
.
conv_filter_strides_
,
WeiElementOp
,
params
.
conv_filter_dilations_
,
OutElementOp
,
params
.
input_left_pads_
,
DeviceConvNDFwdInstance
<
3
>
,
params
.
input_right_pads_
,
ReferenceConvNDFwdInstance
<
3
>>
(
InElementOp
{},
params
,
do_verification
,
init_method
,
time_kernel
);
WeiElementOp
{},
OutElementOp
{});
ref_invoker
.
Run
(
ref_argument
);
out_device_buf
.
FromDevice
(
device_output
.
mData
.
data
());
return
ck
::
utils
::
check_err
(
host_output
.
mData
,
device_output
.
mData
,
"Error: incorrect results!"
,
1e-5
f
,
1e-4
f
)
?
0
:
1
;
};
switch
(
num_dim_spatial
)
{
case
1
:
{
auto
ref_conv
=
ReferenceConvNDFwdInstance
<
1
>
();
return
verify_f
(
ref_conv
);
}
case
2
:
{
auto
ref_conv
=
ReferenceConvNDFwdInstance
<
2
>
();
return
verify_f
(
ref_conv
);
}
case
3
:
{
auto
ref_conv
=
ReferenceConvNDFwdInstance
<
3
>
();
return
verify_f
(
ref_conv
);
}
default:
{
throw
std
::
runtime_error
(
"Unsupported number of spatial dimensions provided!"
);
}
}
}
}
return
0
;
return
0
;
}
}
example/09_convnd_fwd/convnd_fwd_xdl_fp16.cpp
View file @
21892202
...
@@ -11,10 +11,6 @@ using AccDataType = float;
...
@@ -11,10 +11,6 @@ using AccDataType = float;
template
<
ck
::
index_t
...
Is
>
template
<
ck
::
index_t
...
Is
>
using
S
=
ck
::
Sequence
<
Is
...
>
;
using
S
=
ck
::
Sequence
<
Is
...
>
;
using
InLayout
=
ck
::
tensor_layout
::
convolution
::
NHWC
;
using
WeiLayout
=
ck
::
tensor_layout
::
convolution
::
KYXC
;
using
OutLayout
=
ck
::
tensor_layout
::
convolution
::
NHWK
;
using
InElementOp
=
ck
::
tensor_operation
::
element_wise
::
PassThrough
;
using
InElementOp
=
ck
::
tensor_operation
::
element_wise
::
PassThrough
;
using
WeiElementOp
=
ck
::
tensor_operation
::
element_wise
::
PassThrough
;
using
WeiElementOp
=
ck
::
tensor_operation
::
element_wise
::
PassThrough
;
using
OutElementOp
=
ck
::
tensor_operation
::
element_wise
::
PassThrough
;
using
OutElementOp
=
ck
::
tensor_operation
::
element_wise
::
PassThrough
;
...
@@ -106,9 +102,6 @@ int main(int argc, char* argv[])
...
@@ -106,9 +102,6 @@ int main(int argc, char* argv[])
WeiDataType
,
WeiDataType
,
OutDataType
,
OutDataType
,
AccDataType
,
AccDataType
,
InLayout
,
WeiLayout
,
OutLayout
,
InElementOp
,
InElementOp
,
WeiElementOp
,
WeiElementOp
,
OutElementOp
,
OutElementOp
,
...
@@ -123,9 +116,6 @@ int main(int argc, char* argv[])
...
@@ -123,9 +116,6 @@ int main(int argc, char* argv[])
WeiDataType
,
WeiDataType
,
OutDataType
,
OutDataType
,
AccDataType
,
AccDataType
,
InLayout
,
WeiLayout
,
OutLayout
,
InElementOp
,
InElementOp
,
WeiElementOp
,
WeiElementOp
,
OutElementOp
,
OutElementOp
,
...
@@ -140,9 +130,6 @@ int main(int argc, char* argv[])
...
@@ -140,9 +130,6 @@ int main(int argc, char* argv[])
WeiDataType
,
WeiDataType
,
OutDataType
,
OutDataType
,
AccDataType
,
AccDataType
,
InLayout
,
WeiLayout
,
OutLayout
,
InElementOp
,
InElementOp
,
WeiElementOp
,
WeiElementOp
,
OutElementOp
,
OutElementOp
,
...
@@ -150,4 +137,6 @@ int main(int argc, char* argv[])
...
@@ -150,4 +137,6 @@ int main(int argc, char* argv[])
ReferenceConvNDFwdInstance
<
3
>>
(
ReferenceConvNDFwdInstance
<
3
>>
(
params
,
do_verification
,
init_method
,
time_kernel
);
params
,
do_verification
,
init_method
,
time_kernel
);
}
}
return
0
;
}
}
example/09_convnd_fwd/convnd_fwd_xdl_fp32.cpp
View file @
21892202
// SPDX-License-Identifier: MIT
// SPDX-License-Identifier: MIT
// Copyright (c) 2018-2022, Advanced Micro Devices, Inc. All rights reserved.
// Copyright (c) 2018-2022, Advanced Micro Devices, Inc. All rights reserved.
#include <cstdlib>
#include "convnd_fwd_common.hpp"
#include <iostream>
#include <numeric>
#include <type_traits>
#include "ck/ck.hpp"
#include "ck/tensor_operation/gpu/device/tensor_layout.hpp"
#include "ck/tensor_operation/gpu/device/device_convnd_fwd_xdl_nhwc_kyxc_nhwk.hpp"
#include "ck/tensor_operation/gpu/element/element_wise_operation.hpp"
#include "ck/library/utility/check_err.hpp"
#include "ck/library/utility/conv_util.hpp"
#include "ck/library/host_tensor/device_memory.hpp"
#include "ck/library/host_tensor/host_tensor.hpp"
#include "ck/library/host_tensor/host_tensor_generator.hpp"
#include "ck/library/reference_tensor_operation/cpu/reference_conv_fwd.hpp"
namespace
{
using
InDataType
=
float
;
using
InDataType
=
float
;
using
WeiDataType
=
float
;
using
WeiDataType
=
float
;
...
@@ -35,48 +18,42 @@ using OutElementOp = ck::tensor_operation::element_wise::PassThrough;
...
@@ -35,48 +18,42 @@ using OutElementOp = ck::tensor_operation::element_wise::PassThrough;
static
constexpr
auto
ConvFwdDefault
=
static
constexpr
auto
ConvFwdDefault
=
ck
::
tensor_operation
::
device
::
ConvolutionForwardSpecialization
::
Default
;
ck
::
tensor_operation
::
device
::
ConvolutionForwardSpecialization
::
Default
;
using
DeviceConvFwdBasePtr
=
ck
::
tensor_operation
::
device
::
DeviceConvFwdPtr
<
InElementOp
,
WeiElementOp
,
OutElementOp
>
;
template
<
ck
::
index_t
NumDimSpatial
>
template
<
ck
::
index_t
NumDimSpatial
>
using
DeviceConvNDFwdInstance
=
ck
::
tensor_operation
::
device
::
using
DeviceConvNDFwdInstance
=
ck
::
tensor_operation
::
device
::
DeviceConvNdFwdNwcKxcNwk_Xdl
<
DeviceConvNDFwdXdl_Input_N_Hi_Wi_C_Weight_K_Y_X_C_Output_N_Ho_Wo_K
<
InDataType
,
//
// clang-format off
WeiDataType
,
//
InDataType
,
//
OutDataType
,
//
WeiDataType
,
//
AccDataType
,
//
OutDataType
,
//
InElementOp
,
// Input Elementwise Operation
AccDataType
,
//
WeiElementOp
,
// Weights Elementwise Operation
InElementOp
,
// Input Elementwise Operation
OutElementOp
,
// Output Elementwise Operation
WeiElementOp
,
// Weights Elementwise Operation
ConvFwdDefault
,
// ConvForwardSpecialization
OutElementOp
,
// Output Elementwise Operation
NumDimSpatial
,
// NumDimSpatial
ConvFwdDefault
,
// ConvForwardSpecialization
256
,
// BlockSize
NumDimSpatial
,
// NumDimSpatial
256
,
// MPerBlock
256
,
// BlockSize
128
,
// NPerBlock
256
,
// MPerBlock
4
,
// K0PerBlock
128
,
// NPerBlock
4
,
// K1
4
,
// K0PerBlock
32
,
// MPerXDL
4
,
// K1
32
,
// NPerXDL
32
,
// MPerXDL
4
,
// MXdlPerWave
32
,
// NPerXDL
2
,
// NXdlPerWave
4
,
// MXdlPerWave
S
<
4
,
64
,
1
>
,
// ABlockTransferThreadClusterLengths_K0_M_K1
2
,
// NXdlPerWave
S
<
1
,
0
,
2
>
,
// ABlockTransferThreadClusterArrangeOrder
S
<
4
,
64
,
1
>
,
// ABlockTransferThreadClusterLengths_K0_M_K1
S
<
1
,
0
,
2
>
,
// ABlockTransferSrcAccessOrder
S
<
1
,
0
,
2
>
,
// ABlockTransferThreadClusterArrangeOrder
2
,
// ABlockTransferSrcVectorDim
S
<
1
,
0
,
2
>
,
// ABlockTransferSrcAccessOrder
4
,
// ABlockTransferSrcScalarPerVector
2
,
// ABlockTransferSrcVectorDim
4
,
// ABlockTransferDstScalarPerVector_K1
4
,
// ABlockTransferSrcScalarPerVector
true
,
// ABlockLdsAddExtraM
4
,
// ABlockTransferDstScalarPerVector_K1
S
<
4
,
64
,
1
>
,
// BBlockTransferThreadClusterLengths_K0_N_K1
true
,
// ABlockLdsAddExtraM
S
<
1
,
0
,
2
>
,
// BBlockTransferThreadClusterArrangeOrder
S
<
4
,
64
,
1
>
,
// BBlockTransferThreadClusterLengths_K0_N_K1
S
<
1
,
0
,
2
>
,
// BBlockTransferSrcAccessOrder
S
<
1
,
0
,
2
>
,
// BBlockTransferThreadClusterArrangeOrder
2
,
// BBlockTransferSrcVectorDim
S
<
1
,
0
,
2
>
,
// BBlockTransferSrcAccessOrder
4
,
// BBlockTransferSrcScalarPerVector
2
,
// BBlockTransferSrcVectorDim
4
,
// BBlockTransferDstScalarPerVector_K1
4
,
// BBlockTransferSrcScalarPerVector
true
,
// BBlockTransferAddExtraN
4
,
// BBlockTransferDstScalarPerVector_K1
7
,
// CThreadTransferSrcDstVectorDim
true
,
// BBlockTransferAddExtraN
1
>
;
// CThreadTransferDstScalarPerVector
7
,
// CThreadTransferSrcDstVectorDim
1
>
;
// CThreadTransferDstScalarPerVector
// clang-format on
template
<
ck
::
index_t
NumDimSpatial
>
template
<
ck
::
index_t
NumDimSpatial
>
using
ReferenceConvNDFwdInstance
=
ck
::
tensor_operation
::
host
::
ReferenceConvFwd
<
InDataType
,
using
ReferenceConvNDFwdInstance
=
ck
::
tensor_operation
::
host
::
ReferenceConvFwd
<
InDataType
,
...
@@ -87,260 +64,79 @@ using ReferenceConvNDFwdInstance = ck::tensor_operation::host::ReferenceConvFwd<
...
@@ -87,260 +64,79 @@ using ReferenceConvNDFwdInstance = ck::tensor_operation::host::ReferenceConvFwd<
OutElementOp
,
OutElementOp
,
NumDimSpatial
>
;
NumDimSpatial
>
;
DeviceConvFwdBasePtr
get_conv_instance
(
int
num_dim_spatial
)
{
switch
(
num_dim_spatial
)
{
case
3
:
{
return
std
::
make_unique
<
DeviceConvNDFwdInstance
<
3
>>
();
}
case
2
:
{
return
std
::
make_unique
<
DeviceConvNDFwdInstance
<
2
>>
();
}
case
1
:
{
return
std
::
make_unique
<
DeviceConvNDFwdInstance
<
1
>>
();
}
default:
{
throw
std
::
runtime_error
(
"Unsupported number of spatial dimensions provided!"
);
}
}
}
void
print_use_msg
()
{
std
::
cout
<<
"arg1: verification (0=no, 1=yes)
\n
"
<<
"arg2: initialization (0=no init, 1=integer value, 2=decimal value)
\n
"
<<
"arg3: time kernel (0=n0, 1=yes)
\n
"
<<
"arg4: N spatial dimensions (default 2)
\n
"
<<
"Following arguments (depending on number of spatial dims):
\n
"
<<
" N, K, C,
\n
"
<<
" <filter spatial dimensions>, (ie Y, X for 2D)
\n
"
<<
" <input image spatial dimensions>, (ie Hi, Wi for 2D)
\n
"
<<
" <strides>, (ie Sy, Sx for 2D)
\n
"
<<
" <dilations>, (ie Dy, Dx for 2D)
\n
"
<<
" <left padding>, (ie LeftPy, LeftPx for 2D)
\n
"
<<
" <right padding>, (ie RightPy, RightPx for 2D)
\n
"
<<
std
::
endl
;
}
ck
::
utils
::
conv
::
ConvParams
parse_conv_params
(
int
num_dim_spatial
,
int
argc
,
char
*
argv
[])
{
// (N, K, C) + num_dim_spatial * 6 (filter, input, strides, dilations, pad left, pad right)
int
conv_args
=
3
+
num_dim_spatial
*
6
;
int
cmdline_nargs
=
conv_args
+
5
;
if
(
cmdline_nargs
!=
argc
)
{
print_use_msg
();
exit
(
0
);
}
ck
::
utils
::
conv
::
ConvParams
params
;
int
arg_idx
=
5
;
params
.
num_dim_spatial_
=
num_dim_spatial
;
params
.
N_
=
std
::
stoi
(
argv
[
arg_idx
++
]);
params
.
K_
=
std
::
stoi
(
argv
[
arg_idx
++
]);
params
.
C_
=
std
::
stoi
(
argv
[
arg_idx
++
]);
params
.
filter_spatial_lengths_
.
resize
(
num_dim_spatial
);
for
(
int
i
=
0
;
i
<
num_dim_spatial
;
++
i
)
{
params
.
filter_spatial_lengths_
[
i
]
=
std
::
stoi
(
argv
[
arg_idx
++
]);
}
params
.
input_spatial_lengths_
.
resize
(
num_dim_spatial
);
for
(
int
i
=
0
;
i
<
num_dim_spatial
;
++
i
)
{
params
.
input_spatial_lengths_
[
i
]
=
std
::
stoi
(
argv
[
arg_idx
++
]);
}
params
.
conv_filter_strides_
.
resize
(
num_dim_spatial
);
for
(
int
i
=
0
;
i
<
num_dim_spatial
;
++
i
)
{
params
.
conv_filter_strides_
[
i
]
=
std
::
stoi
(
argv
[
arg_idx
++
]);
}
params
.
conv_filter_dilations_
.
resize
(
num_dim_spatial
);
for
(
int
i
=
0
;
i
<
num_dim_spatial
;
++
i
)
{
params
.
conv_filter_dilations_
[
i
]
=
std
::
stoi
(
argv
[
arg_idx
++
]);
}
params
.
input_left_pads_
.
resize
(
num_dim_spatial
);
for
(
int
i
=
0
;
i
<
num_dim_spatial
;
++
i
)
{
params
.
input_left_pads_
[
i
]
=
std
::
stoi
(
argv
[
arg_idx
++
]);
}
params
.
input_right_pads_
.
resize
(
num_dim_spatial
);
for
(
int
i
=
0
;
i
<
num_dim_spatial
;
++
i
)
{
params
.
input_right_pads_
[
i
]
=
std
::
stoi
(
argv
[
arg_idx
++
]);
}
return
params
;
}
}
// anonymous namespace
int
main
(
int
argc
,
char
*
argv
[])
int
main
(
int
argc
,
char
*
argv
[])
{
{
using
namespace
ck
::
utils
::
conv
;
print_helper_msg
()
;
bool
do_verification
=
true
;
bool
do_verification
=
true
;
int
init_method
=
1
;
int
init_method
=
1
;
bool
time_kernel
=
false
;
bool
time_kernel
=
false
;
int
num_dim_spatial
=
2
;
int
num_dim_spatial
=
2
;
ck
::
utils
::
conv
::
ConvParams
params
;
ck
::
tensor_operation
::
device
::
ConvParams
params
;
if
(
argc
>=
5
)
if
(
argc
==
1
)
{
// use default
}
else
if
(
argc
==
4
)
{
{
do_verification
=
std
::
stoi
(
argv
[
1
]);
do_verification
=
std
::
stoi
(
argv
[
1
]);
init_method
=
std
::
stoi
(
argv
[
2
]);
init_method
=
std
::
stoi
(
argv
[
2
]);
time_kernel
=
std
::
stoi
(
argv
[
3
]);
time_kernel
=
std
::
stoi
(
argv
[
3
]);
num_dim_spatial
=
std
::
stoi
(
argv
[
4
]);
}
}
else
if
(
argc
>=
6
)
{
{
do_verification
=
std
::
stoi
(
argv
[
1
]);
init_method
=
std
::
stoi
(
argv
[
2
]);
time_kernel
=
std
::
stoi
(
argv
[
3
]);
num_dim_spatial
=
std
::
stoi
(
argv
[
4
]);
params
=
parse_conv_params
(
num_dim_spatial
,
argc
,
argv
);
params
=
parse_conv_params
(
num_dim_spatial
,
argc
,
argv
);
}
}
std
::
vector
<
std
::
size_t
>
input_dims
{
static_cast
<
std
::
size_t
>
(
params
.
N_
),
if
(
num_dim_spatial
==
1
)
static_cast
<
std
::
size_t
>
(
params
.
C_
)};
input_dims
.
insert
(
std
::
end
(
input_dims
),
std
::
begin
(
params
.
input_spatial_lengths_
),
std
::
end
(
params
.
input_spatial_lengths_
));
std
::
vector
<
std
::
size_t
>
filter_dims
{
static_cast
<
std
::
size_t
>
(
params
.
K_
),
static_cast
<
std
::
size_t
>
(
params
.
C_
)};
filter_dims
.
insert
(
std
::
end
(
filter_dims
),
std
::
begin
(
params
.
filter_spatial_lengths_
),
std
::
end
(
params
.
filter_spatial_lengths_
));
const
std
::
vector
<
ck
::
index_t
>&
output_spatial_lengths
=
params
.
GetOutputSpatialLengths
();
std
::
vector
<
std
::
size_t
>
output_dims
{
static_cast
<
std
::
size_t
>
(
params
.
N_
),
static_cast
<
std
::
size_t
>
(
params
.
K_
)};
output_dims
.
insert
(
std
::
end
(
output_dims
),
std
::
begin
(
output_spatial_lengths
),
std
::
end
(
output_spatial_lengths
));
Tensor
<
InDataType
>
input
(
get_input_host_tensor_descriptor
(
input_dims
,
num_dim_spatial
));
Tensor
<
WeiDataType
>
weights
(
get_filters_host_tensor_descriptor
(
filter_dims
,
num_dim_spatial
));
Tensor
<
OutDataType
>
host_output
(
get_output_host_tensor_descriptor
(
output_dims
,
num_dim_spatial
));
Tensor
<
OutDataType
>
device_output
(
get_output_host_tensor_descriptor
(
output_dims
,
num_dim_spatial
));
std
::
cout
<<
"input: "
<<
input
.
mDesc
<<
std
::
endl
;
std
::
cout
<<
"weights: "
<<
weights
.
mDesc
<<
std
::
endl
;
std
::
cout
<<
"output: "
<<
host_output
.
mDesc
<<
std
::
endl
;
switch
(
init_method
)
{
{
case
0
:
break
;
return
run_conv_fwd
<
1
,
case
1
:
InDataType
,
input
.
GenerateTensorValue
(
GeneratorTensor_2
<
InDataType
>
{
-
5
,
5
});
WeiDataType
,
weights
.
GenerateTensorValue
(
GeneratorTensor_2
<
WeiDataType
>
{
-
5
,
5
});
OutDataType
,
break
;
AccDataType
,
default:
InElementOp
,
input
.
GenerateTensorValue
(
GeneratorTensor_3
<
InDataType
>
{
0.0
,
1.0
});
WeiElementOp
,
weights
.
GenerateTensorValue
(
GeneratorTensor_3
<
WeiDataType
>
{
-
0.5
,
0.5
});
OutElementOp
,
}
DeviceConvNDFwdInstance
<
1
>
,
ReferenceConvNDFwdInstance
<
1
>>
(
DeviceMem
in_device_buf
(
sizeof
(
InDataType
)
*
input
.
mDesc
.
GetElementSpace
());
params
,
do_verification
,
init_method
,
time_kernel
);
DeviceMem
wei_device_buf
(
sizeof
(
WeiDataType
)
*
weights
.
mDesc
.
GetElementSpace
());
}
DeviceMem
out_device_buf
(
sizeof
(
OutDataType
)
*
device_output
.
mDesc
.
GetElementSpace
());
else
if
(
num_dim_spatial
==
2
)
in_device_buf
.
ToDevice
(
input
.
mData
.
data
());
wei_device_buf
.
ToDevice
(
weights
.
mData
.
data
());
// do GEMM
auto
conv
=
get_conv_instance
(
num_dim_spatial
);
auto
invoker
=
conv
->
MakeInvokerPointer
();
auto
argument
=
conv
->
MakeArgumentPointer
(
static_cast
<
InDataType
*>
(
in_device_buf
.
GetDeviceBuffer
()),
static_cast
<
WeiDataType
*>
(
wei_device_buf
.
GetDeviceBuffer
()),
static_cast
<
OutDataType
*>
(
out_device_buf
.
GetDeviceBuffer
()),
params
.
N_
,
params
.
K_
,
params
.
C_
,
params
.
input_spatial_lengths_
,
params
.
filter_spatial_lengths_
,
output_spatial_lengths
,
params
.
conv_filter_strides_
,
params
.
conv_filter_dilations_
,
params
.
input_left_pads_
,
params
.
input_right_pads_
,
InElementOp
{},
WeiElementOp
{},
OutElementOp
{});
if
(
!
conv
->
IsSupportedArgument
(
argument
.
get
()))
{
{
throw
std
::
runtime_error
(
return
run_conv_fwd
<
2
,
"wrong! device_conv with the specified compilation parameters does "
InDataType
,
"not support this Conv problem"
);
WeiDataType
,
}
OutDataType
,
AccDataType
,
float
ave_time
=
invoker
->
Run
(
argument
.
get
(),
StreamConfig
{
nullptr
,
time_kernel
});
InElementOp
,
WeiElementOp
,
std
::
size_t
flop
=
get_flops
(
OutElementOp
,
params
.
N_
,
params
.
C_
,
params
.
K_
,
params
.
filter_spatial_lengths_
,
output_spatial_lengths
);
DeviceConvNDFwdInstance
<
2
>
,
std
::
size_t
num_btype
=
ReferenceConvNDFwdInstance
<
2
>>
(
get_btype
<
InDataType
,
WeiDataType
,
OutDataType
>
(
params
.
N_
,
params
,
do_verification
,
init_method
,
time_kernel
);
params
.
C_
,
}
params
.
K_
,
else
if
(
num_dim_spatial
==
3
)
params
.
input_spatial_lengths_
,
params
.
filter_spatial_lengths_
,
output_spatial_lengths
);
float
tflops
=
static_cast
<
float
>
(
flop
)
/
1.E9
/
ave_time
;
float
gb_per_sec
=
num_btype
/
1.E6
/
ave_time
;
std
::
cout
<<
"Perf: "
<<
ave_time
<<
" ms, "
<<
tflops
<<
" TFlops, "
<<
gb_per_sec
<<
" GB/s"
<<
std
::
endl
;
if
(
do_verification
)
{
{
auto
verify_f
=
[
&
input
,
&
weights
,
&
host_output
,
&
params
,
&
out_device_buf
,
&
device_output
](
return
run_conv_fwd
<
3
,
const
auto
&
ref_conv
)
{
InDataType
,
auto
ref_invoker
=
ref_conv
.
MakeInvoker
();
WeiDataType
,
auto
ref_argument
=
ref_conv
.
MakeArgument
(
input
,
OutDataType
,
weights
,
AccDataType
,
host_output
,
InElementOp
,
params
.
conv_filter_strides_
,
WeiElementOp
,
params
.
conv_filter_dilations_
,
OutElementOp
,
params
.
input_left_pads_
,
DeviceConvNDFwdInstance
<
3
>
,
params
.
input_right_pads_
,
ReferenceConvNDFwdInstance
<
3
>>
(
InElementOp
{},
params
,
do_verification
,
init_method
,
time_kernel
);
WeiElementOp
{},
OutElementOp
{});
ref_invoker
.
Run
(
ref_argument
);
out_device_buf
.
FromDevice
(
device_output
.
mData
.
data
());
return
ck
::
utils
::
check_err
(
device_output
.
mData
,
host_output
.
mData
,
"Error: incorrect results!"
,
1e-5
f
,
1e-4
f
)
?
0
:
1
;
};
switch
(
num_dim_spatial
)
{
case
3
:
{
auto
ref_conv
=
ReferenceConvNDFwdInstance
<
3
>
();
return
verify_f
(
ref_conv
);
}
case
2
:
{
auto
ref_conv
=
ReferenceConvNDFwdInstance
<
2
>
();
return
verify_f
(
ref_conv
);
}
case
1
:
{
auto
ref_conv
=
ReferenceConvNDFwdInstance
<
1
>
();
return
verify_f
(
ref_conv
);
}
default:
{
throw
std
::
runtime_error
(
"Unsupported number of spatial dimensions provided!"
);
}
}
}
}
return
0
;
return
0
;
}
}
example/09_convnd_fwd/convnd_fwd_xdl_fp64.cpp
View file @
21892202
// SPDX-License-Identifier: MIT
// SPDX-License-Identifier: MIT
// Copyright (c) 2018-2022, Advanced Micro Devices, Inc. All rights reserved.
// Copyright (c) 2018-2022, Advanced Micro Devices, Inc. All rights reserved.
#include <cstdlib>
#include "convnd_fwd_common.hpp"
#include <iostream>
#include <numeric>
#include <type_traits>
#include "ck/ck.hpp"
#include "ck/tensor_operation/gpu/device/tensor_layout.hpp"
#include "ck/tensor_operation/gpu/device/device_convnd_fwd_xdl_nhwc_kyxc_nhwk.hpp"
#include "ck/tensor_operation/gpu/element/element_wise_operation.hpp"
#include "ck/library/utility/check_err.hpp"
#include "ck/library/utility/conv_util.hpp"
#include "ck/library/host_tensor/device_memory.hpp"
#include "ck/library/host_tensor/host_tensor.hpp"
#include "ck/library/host_tensor/host_tensor_generator.hpp"
#include "ck/library/reference_tensor_operation/cpu/reference_conv_fwd.hpp"
namespace
{
using
InDataType
=
double
;
using
InDataType
=
double
;
using
WeiDataType
=
double
;
using
WeiDataType
=
double
;
...
@@ -35,48 +18,42 @@ using OutElementOp = ck::tensor_operation::element_wise::PassThrough;
...
@@ -35,48 +18,42 @@ using OutElementOp = ck::tensor_operation::element_wise::PassThrough;
static
constexpr
auto
ConvFwdDefault
=
static
constexpr
auto
ConvFwdDefault
=
ck
::
tensor_operation
::
device
::
ConvolutionForwardSpecialization
::
Default
;
ck
::
tensor_operation
::
device
::
ConvolutionForwardSpecialization
::
Default
;
using
DeviceConvFwdBasePtr
=
ck
::
tensor_operation
::
device
::
DeviceConvFwdPtr
<
InElementOp
,
WeiElementOp
,
OutElementOp
>
;
template
<
ck
::
index_t
NumDimSpatial
>
template
<
ck
::
index_t
NumDimSpatial
>
using
DeviceConvNDFwdInstance
=
ck
::
tensor_operation
::
device
::
using
DeviceConvNDFwdInstance
=
ck
::
tensor_operation
::
device
::
DeviceConvNdFwdNwcKxcNwk_Xdl
<
DeviceConvNDFwdXdl_Input_N_Hi_Wi_C_Weight_K_Y_X_C_Output_N_Ho_Wo_K
<
InDataType
,
//
// clang-format off
WeiDataType
,
//
InDataType
,
//
OutDataType
,
//
WeiDataType
,
//
AccDataType
,
//
OutDataType
,
//
InElementOp
,
// Input Elementwise Operation
AccDataType
,
//
WeiElementOp
,
// Weights Elementwise Operation
InElementOp
,
// Input Elementwise Operation
OutElementOp
,
// Output Elementwise Operation
WeiElementOp
,
// Weights Elementwise Operation
ConvFwdDefault
,
// ConvForwardSpecialization
OutElementOp
,
// Output Elementwise Operation
NumDimSpatial
,
// NumDimSpatial
ConvFwdDefault
,
// ConvForwardSpecialization
256
,
// BlockSize
NumDimSpatial
,
// NumDimSpatial
128
,
// MPerBlock
256
,
// BlockSize
128
,
// NPerBlock
128
,
// MPerBlock
4
,
// K0PerBlock
128
,
// NPerBlock
2
,
// K1
4
,
// K0PerBlock
16
,
// MPerXDL
2
,
// K1
16
,
// NPerXDL
16
,
// MPerXDL
4
,
// MXdlPerWave
16
,
// NPerXDL
4
,
// NXdlPerWave
4
,
// MXdlPerWave
S
<
4
,
64
,
1
>
,
// ABlockTransferThreadClusterLengths_K0_M_K1
4
,
// NXdlPerWave
S
<
1
,
0
,
2
>
,
// ABlockTransferThreadClusterArrangeOrder
S
<
4
,
64
,
1
>
,
// ABlockTransferThreadClusterLengths_K0_M_K1
S
<
1
,
0
,
2
>
,
// ABlockTransferSrcAccessOrder
S
<
1
,
0
,
2
>
,
// ABlockTransferThreadClusterArrangeOrder
2
,
// ABlockTransferSrcVectorDim
S
<
1
,
0
,
2
>
,
// ABlockTransferSrcAccessOrder
2
,
// ABlockTransferSrcScalarPerVector
2
,
// ABlockTransferSrcVectorDim
2
,
// ABlockTransferDstScalarPerVector_K1
2
,
// ABlockTransferSrcScalarPerVector
true
,
// ABlockLdsAddExtraM
2
,
// ABlockTransferDstScalarPerVector_K1
S
<
4
,
64
,
1
>
,
// BBlockTransferThreadClusterLengths_K0_N_K1
true
,
// ABlockLdsAddExtraM
S
<
1
,
0
,
2
>
,
// BBlockTransferThreadClusterArrangeOrder
S
<
4
,
64
,
1
>
,
// BBlockTransferThreadClusterLengths_K0_N_K1
S
<
1
,
0
,
2
>
,
// BBlockTransferSrcAccessOrder
S
<
1
,
0
,
2
>
,
// BBlockTransferThreadClusterArrangeOrder
2
,
// BBlockTransferSrcVectorDim
S
<
1
,
0
,
2
>
,
// BBlockTransferSrcAccessOrder
2
,
// BBlockTransferSrcScalarPerVector
2
,
// BBlockTransferSrcVectorDim
2
,
// BBlockTransferDstScalarPerVector_K1
2
,
// BBlockTransferSrcScalarPerVector
true
,
// BBlockTransferAddExtraN
2
,
// BBlockTransferDstScalarPerVector_K1
7
,
// CThreadTransferSrcDstVectorDim
true
,
// BBlockTransferAddExtraN
1
>
;
// CThreadTransferDstScalarPerVector
7
,
// CThreadTransferSrcDstVectorDim
1
>
;
// CThreadTransferDstScalarPerVector
// clang-format on
template
<
ck
::
index_t
NumDimSpatial
>
template
<
ck
::
index_t
NumDimSpatial
>
using
ReferenceConvNDFwdInstance
=
ck
::
tensor_operation
::
host
::
ReferenceConvFwd
<
InDataType
,
using
ReferenceConvNDFwdInstance
=
ck
::
tensor_operation
::
host
::
ReferenceConvFwd
<
InDataType
,
...
@@ -87,261 +64,79 @@ using ReferenceConvNDFwdInstance = ck::tensor_operation::host::ReferenceConvFwd<
...
@@ -87,261 +64,79 @@ using ReferenceConvNDFwdInstance = ck::tensor_operation::host::ReferenceConvFwd<
OutElementOp
,
OutElementOp
,
NumDimSpatial
>
;
NumDimSpatial
>
;
DeviceConvFwdBasePtr
get_conv_instance
(
int
num_dim_spatial
)
int
main
(
int
argc
,
char
*
argv
[])
{
switch
(
num_dim_spatial
)
{
case
3
:
{
return
std
::
make_unique
<
DeviceConvNDFwdInstance
<
3
>>
();
}
case
2
:
{
return
std
::
make_unique
<
DeviceConvNDFwdInstance
<
2
>>
();
}
case
1
:
{
return
std
::
make_unique
<
DeviceConvNDFwdInstance
<
1
>>
();
}
default:
{
throw
std
::
runtime_error
(
"Unsupported number of spatial dimensions provided!"
);
}
}
}
void
print_use_msg
()
{
std
::
cout
<<
"arg1: verification (0=no, 1=yes)
\n
"
<<
"arg2: initialization (0=no init, 1=integer value, 2=decimal value)
\n
"
<<
"arg3: run kernel # of times (>1)
\n
"
<<
"arg4: N spatial dimensions (default 2)
\n
"
<<
"Following arguments (depending on number of spatial dims):
\n
"
<<
" N, K, C,
\n
"
<<
" <filter spatial dimensions>, (ie Y, X for 2D)
\n
"
<<
" <input image spatial dimensions>, (ie Hi, Wi for 2D)
\n
"
<<
" <strides>, (ie Sy, Sx for 2D)
\n
"
<<
" <dilations>, (ie Dy, Dx for 2D)
\n
"
<<
" <left padding>, (ie LeftPy, LeftPx for 2D)
\n
"
<<
" <right padding>, (ie RightPy, RightPx for 2D)
\n
"
<<
std
::
endl
;
}
ck
::
utils
::
conv
::
ConvParams
parse_conv_params
(
int
num_dim_spatial
,
int
argc
,
char
*
argv
[])
{
{
// (N, K, C) + num_dim_spatial * 6 (filter, input, strides, dilations, pad left, pad right)
print_helper_msg
();
int
conv_args
=
3
+
num_dim_spatial
*
6
;
int
cmdline_nargs
=
conv_args
+
5
;
if
(
cmdline_nargs
!=
argc
)
{
print_use_msg
();
exit
(
0
);
}
ck
::
utils
::
conv
::
ConvParams
params
;
bool
do_verification
=
true
;
int
arg_idx
=
5
;
int
init_method
=
1
;
bool
time_kernel
=
false
;
int
num_dim_spatial
=
2
;
params
.
num_dim_spatial_
=
num_dim_spatial
;
ck
::
tensor_operation
::
device
::
ConvParams
params
;
params
.
N_
=
std
::
stoi
(
argv
[
arg_idx
++
]);
params
.
K_
=
std
::
stoi
(
argv
[
arg_idx
++
]);
params
.
C_
=
std
::
stoi
(
argv
[
arg_idx
++
]);
params
.
filter_spatial_lengths_
.
resize
(
num_dim_spatial
);
if
(
argc
==
1
)
for
(
int
i
=
0
;
i
<
num_dim_spatial
;
++
i
)
{
params
.
filter_spatial_lengths_
[
i
]
=
std
::
stoi
(
argv
[
arg_idx
++
]);
}
params
.
input_spatial_lengths_
.
resize
(
num_dim_spatial
);
for
(
int
i
=
0
;
i
<
num_dim_spatial
;
++
i
)
{
params
.
input_spatial_lengths_
[
i
]
=
std
::
stoi
(
argv
[
arg_idx
++
]);
}
params
.
conv_filter_strides_
.
resize
(
num_dim_spatial
);
for
(
int
i
=
0
;
i
<
num_dim_spatial
;
++
i
)
{
params
.
conv_filter_strides_
[
i
]
=
std
::
stoi
(
argv
[
arg_idx
++
]);
}
params
.
conv_filter_dilations_
.
resize
(
num_dim_spatial
);
for
(
int
i
=
0
;
i
<
num_dim_spatial
;
++
i
)
{
{
params
.
conv_filter_dilations_
[
i
]
=
std
::
stoi
(
argv
[
arg_idx
++
]);
// use default
}
}
params
.
input_left_pads_
.
resize
(
num_dim_spatial
);
else
if
(
argc
==
4
)
for
(
int
i
=
0
;
i
<
num_dim_spatial
;
++
i
)
{
{
params
.
input_left_pads_
[
i
]
=
std
::
stoi
(
argv
[
arg_idx
++
]);
do_verification
=
std
::
stoi
(
argv
[
1
]);
init_method
=
std
::
stoi
(
argv
[
2
]);
time_kernel
=
std
::
stoi
(
argv
[
3
]);
}
}
params
.
input_right_pads_
.
resize
(
num_dim_spatial
);
else
for
(
int
i
=
0
;
i
<
num_dim_spatial
;
++
i
)
{
params
.
input_right_pads_
[
i
]
=
std
::
stoi
(
argv
[
arg_idx
++
]);
}
return
params
;
}
}
// anonymous namespace
int
main
(
int
argc
,
char
*
argv
[])
{
using
namespace
ck
::
utils
::
conv
;
bool
do_verification
=
0
;
int
init_method
=
0
;
bool
time_kernel
=
false
;
int
num_dim_spatial
=
2
;
ck
::
utils
::
conv
::
ConvParams
params
;
if
(
argc
>=
5
)
{
{
do_verification
=
std
::
stoi
(
argv
[
1
]);
do_verification
=
std
::
stoi
(
argv
[
1
]);
init_method
=
std
::
stoi
(
argv
[
2
]);
init_method
=
std
::
stoi
(
argv
[
2
]);
time_kernel
=
std
::
stoi
(
argv
[
3
]);
time_kernel
=
std
::
stoi
(
argv
[
3
]);
num_dim_spatial
=
std
::
stoi
(
argv
[
4
]);
num_dim_spatial
=
std
::
stoi
(
argv
[
4
]);
}
if
(
argc
>=
6
)
{
params
=
parse_conv_params
(
num_dim_spatial
,
argc
,
argv
);
params
=
parse_conv_params
(
num_dim_spatial
,
argc
,
argv
);
}
}
std
::
vector
<
std
::
size_t
>
input_dims
{
static_cast
<
std
::
size_t
>
(
params
.
N_
),
if
(
num_dim_spatial
==
1
)
static_cast
<
std
::
size_t
>
(
params
.
C_
)};
input_dims
.
insert
(
std
::
end
(
input_dims
),
std
::
begin
(
params
.
input_spatial_lengths_
),
std
::
end
(
params
.
input_spatial_lengths_
));
std
::
vector
<
std
::
size_t
>
filter_dims
{
static_cast
<
std
::
size_t
>
(
params
.
K_
),
static_cast
<
std
::
size_t
>
(
params
.
C_
)};
filter_dims
.
insert
(
std
::
end
(
filter_dims
),
std
::
begin
(
params
.
filter_spatial_lengths_
),
std
::
end
(
params
.
filter_spatial_lengths_
));
const
std
::
vector
<
ck
::
index_t
>&
output_spatial_lengths
=
params
.
GetOutputSpatialLengths
();
std
::
vector
<
std
::
size_t
>
output_dims
{
static_cast
<
std
::
size_t
>
(
params
.
N_
),
static_cast
<
std
::
size_t
>
(
params
.
K_
)};
output_dims
.
insert
(
std
::
end
(
output_dims
),
std
::
begin
(
output_spatial_lengths
),
std
::
end
(
output_spatial_lengths
));
Tensor
<
InDataType
>
input
(
get_input_host_tensor_descriptor
(
input_dims
,
num_dim_spatial
));
Tensor
<
WeiDataType
>
weights
(
get_filters_host_tensor_descriptor
(
filter_dims
,
num_dim_spatial
));
Tensor
<
OutDataType
>
host_output
(
get_output_host_tensor_descriptor
(
output_dims
,
num_dim_spatial
));
Tensor
<
OutDataType
>
device_output
(
get_output_host_tensor_descriptor
(
output_dims
,
num_dim_spatial
));
std
::
cout
<<
"input: "
<<
input
.
mDesc
<<
std
::
endl
;
std
::
cout
<<
"weights: "
<<
weights
.
mDesc
<<
std
::
endl
;
std
::
cout
<<
"output: "
<<
host_output
.
mDesc
<<
std
::
endl
;
switch
(
init_method
)
{
{
case
0
:
break
;
return
run_conv_fwd
<
1
,
case
1
:
InDataType
,
input
.
GenerateTensorValue
(
GeneratorTensor_2
<
InDataType
>
{
-
5
,
5
});
WeiDataType
,
weights
.
GenerateTensorValue
(
GeneratorTensor_2
<
WeiDataType
>
{
-
5
,
5
});
OutDataType
,
break
;
AccDataType
,
case
2
:
InElementOp
,
input
.
GenerateTensorValue
(
GeneratorTensor_3
<
InDataType
>
{
0.0
,
1.0
});
WeiElementOp
,
weights
.
GenerateTensorValue
(
GeneratorTensor_3
<
WeiDataType
>
{
-
0.5
,
0.5
});
OutElementOp
,
break
;
DeviceConvNDFwdInstance
<
1
>
,
default:
ReferenceConvNDFwdInstance
<
1
>>
(
input
.
GenerateTensorValue
(
GeneratorTensor_1
<
InDataType
>
{
1
});
params
,
do_verification
,
init_method
,
time_kernel
);
weights
.
GenerateTensorValue
(
GeneratorTensor_1
<
WeiDataType
>
{
1
});
}
}
else
if
(
num_dim_spatial
==
2
)
DeviceMem
in_device_buf
(
sizeof
(
InDataType
)
*
input
.
mDesc
.
GetElementSpace
());
DeviceMem
wei_device_buf
(
sizeof
(
WeiDataType
)
*
weights
.
mDesc
.
GetElementSpace
());
DeviceMem
out_device_buf
(
sizeof
(
OutDataType
)
*
device_output
.
mDesc
.
GetElementSpace
());
in_device_buf
.
ToDevice
(
input
.
mData
.
data
());
wei_device_buf
.
ToDevice
(
weights
.
mData
.
data
());
// do GEMM
auto
conv
=
get_conv_instance
(
num_dim_spatial
);
auto
invoker
=
conv
->
MakeInvokerPointer
();
auto
argument
=
conv
->
MakeArgumentPointer
(
static_cast
<
InDataType
*>
(
in_device_buf
.
GetDeviceBuffer
()),
static_cast
<
WeiDataType
*>
(
wei_device_buf
.
GetDeviceBuffer
()),
static_cast
<
OutDataType
*>
(
out_device_buf
.
GetDeviceBuffer
()),
params
.
N_
,
params
.
K_
,
params
.
C_
,
params
.
input_spatial_lengths_
,
params
.
filter_spatial_lengths_
,
output_spatial_lengths
,
params
.
conv_filter_strides_
,
params
.
conv_filter_dilations_
,
params
.
input_left_pads_
,
params
.
input_right_pads_
,
InElementOp
{},
WeiElementOp
{},
OutElementOp
{});
if
(
!
conv
->
IsSupportedArgument
(
argument
.
get
()))
{
{
throw
std
::
runtime_error
(
return
run_conv_fwd
<
2
,
"wrong! device_conv with the specified compilation parameters does "
InDataType
,
"not support this Conv problem"
);
WeiDataType
,
}
OutDataType
,
AccDataType
,
float
ave_time
=
invoker
->
Run
(
argument
.
get
(),
StreamConfig
{
nullptr
,
time_kernel
});
InElementOp
,
WeiElementOp
,
std
::
size_t
flop
=
get_flops
(
OutElementOp
,
params
.
N_
,
params
.
C_
,
params
.
K_
,
params
.
filter_spatial_lengths_
,
output_spatial_lengths
);
DeviceConvNDFwdInstance
<
2
>
,
std
::
size_t
num_btype
=
ReferenceConvNDFwdInstance
<
2
>>
(
get_btype
<
InDataType
,
WeiDataType
,
OutDataType
>
(
params
.
N_
,
params
,
do_verification
,
init_method
,
time_kernel
);
params
.
C_
,
}
params
.
K_
,
else
if
(
num_dim_spatial
==
3
)
params
.
input_spatial_lengths_
,
params
.
filter_spatial_lengths_
,
output_spatial_lengths
);
float
tflops
=
static_cast
<
float
>
(
flop
)
/
1.E9
/
ave_time
;
float
gb_per_sec
=
num_btype
/
1.E6
/
ave_time
;
std
::
cout
<<
"Perf: "
<<
ave_time
<<
" ms, "
<<
tflops
<<
" TFlops, "
<<
gb_per_sec
<<
" GB/s"
<<
std
::
endl
;
if
(
do_verification
)
{
{
auto
verify_f
=
[
&
input
,
&
weights
,
&
host_output
,
&
params
,
&
out_device_buf
,
&
device_output
](
return
run_conv_fwd
<
3
,
const
auto
&
ref_conv
)
{
InDataType
,
auto
ref_invoker
=
ref_conv
.
MakeInvoker
();
WeiDataType
,
auto
ref_argument
=
ref_conv
.
MakeArgument
(
input
,
OutDataType
,
weights
,
AccDataType
,
host_output
,
InElementOp
,
params
.
conv_filter_strides_
,
WeiElementOp
,
params
.
conv_filter_dilations_
,
OutElementOp
,
params
.
input_left_pads_
,
DeviceConvNDFwdInstance
<
3
>
,
params
.
input_right_pads_
,
ReferenceConvNDFwdInstance
<
3
>>
(
InElementOp
{},
params
,
do_verification
,
init_method
,
time_kernel
);
WeiElementOp
{},
}
OutElementOp
{});
return
0
;
ref_invoker
.
Run
(
ref_argument
);
out_device_buf
.
FromDevice
(
device_output
.
mData
.
data
());
ck
::
utils
::
check_err
(
host_output
.
mData
,
device_output
.
mData
,
"Error: incorrect results!"
,
1e-5
f
,
1e-4
f
);
};
switch
(
num_dim_spatial
)
{
case
3
:
{
auto
ref_conv
=
ReferenceConvNDFwdInstance
<
3
>
();
verify_f
(
ref_conv
);
break
;
}
case
2
:
{
auto
ref_conv
=
ReferenceConvNDFwdInstance
<
2
>
();
verify_f
(
ref_conv
);
break
;
}
case
1
:
{
auto
ref_conv
=
ReferenceConvNDFwdInstance
<
1
>
();
verify_f
(
ref_conv
);
break
;
}
default:
{
throw
std
::
runtime_error
(
"Unsupported number of spatial dimensions provided!"
);
}
}
}
}
}
example/09_convnd_fwd/convnd_fwd_xdl_int8.cpp
View file @
21892202
// SPDX-License-Identifier: MIT
// SPDX-License-Identifier: MIT
// Copyright (c) 2018-2022, Advanced Micro Devices, Inc. All rights reserved.
// Copyright (c) 2018-2022, Advanced Micro Devices, Inc. All rights reserved.
#include <cstdlib>
#include "convnd_fwd_common.hpp"
#include <iostream>
#include <numeric>
#include <type_traits>
#include "ck/ck.hpp"
#include "ck/tensor_operation/gpu/device/tensor_layout.hpp"
#include "ck/tensor_operation/gpu/device/device_convnd_fwd_xdl_nhwc_kyxc_nhwk.hpp"
#include "ck/tensor_operation/gpu/element/element_wise_operation.hpp"
#include "ck/library/utility/check_err.hpp"
#include "ck/library/utility/conv_util.hpp"
#include "ck/library/host_tensor/device_memory.hpp"
#include "ck/library/host_tensor/host_tensor.hpp"
#include "ck/library/host_tensor/host_tensor_generator.hpp"
#include "ck/library/reference_tensor_operation/cpu/reference_conv_fwd.hpp"
namespace
{
using
InDataType
=
int8_t
;
using
InDataType
=
int8_t
;
using
WeiDataType
=
int8_t
;
using
WeiDataType
=
int8_t
;
...
@@ -28,60 +11,49 @@ using AccDataType = int32_t;
...
@@ -28,60 +11,49 @@ using AccDataType = int32_t;
template
<
ck
::
index_t
...
Is
>
template
<
ck
::
index_t
...
Is
>
using
S
=
ck
::
Sequence
<
Is
...
>
;
using
S
=
ck
::
Sequence
<
Is
...
>
;
using
InLayout
=
ck
::
tensor_layout
::
convolution
::
NHWC
;
using
WeiLayout
=
ck
::
tensor_layout
::
convolution
::
KYXC
;
using
OutLayout
=
ck
::
tensor_layout
::
convolution
::
NHWK
;
using
InElementOp
=
ck
::
tensor_operation
::
element_wise
::
PassThrough
;
using
InElementOp
=
ck
::
tensor_operation
::
element_wise
::
PassThrough
;
using
WeiElementOp
=
ck
::
tensor_operation
::
element_wise
::
PassThrough
;
using
WeiElementOp
=
ck
::
tensor_operation
::
element_wise
::
PassThrough
;
using
OutElementOp
=
ck
::
tensor_operation
::
element_wise
::
PassThrough
;
using
OutElementOp
=
ck
::
tensor_operation
::
element_wise
::
PassThrough
;
using
PassThrough
=
ck
::
tensor_operation
::
element_wise
::
PassThrough
;
static
constexpr
auto
ConvFwdDefault
=
static
constexpr
auto
ConvFwdDefault
=
ck
::
tensor_operation
::
device
::
ConvolutionForwardSpecialization
::
Default
;
ck
::
tensor_operation
::
device
::
ConvolutionForwardSpecialization
::
Default
;
using
DeviceConvFwdBasePtr
=
ck
::
tensor_operation
::
device
::
DeviceConvFwdPtr
<
InElementOp
,
WeiElementOp
,
OutElementOp
>
;
template
<
ck
::
index_t
NumDimSpatial
>
template
<
ck
::
index_t
NumDimSpatial
>
using
DeviceConvNDFwdInstance
=
ck
::
tensor_operation
::
device
::
using
DeviceConvNDFwdInstance
=
ck
::
tensor_operation
::
device
::
DeviceConvNdFwdNwcKxcNwk_Xdl
<
DeviceConvNDFwdXdl_Input_N_Hi_Wi_C_Weight_K_Y_X_C_Output_N_Ho_Wo_K
<
InDataType
,
//
// clang-format off
WeiDataType
,
//
InDataType
,
//
OutDataType
,
//
WeiDataType
,
//
AccDataType
,
//
OutDataType
,
//
InElementOp
,
// Input Elementwise Operation
AccDataType
,
//
WeiElementOp
,
// Weights Elementwise Operation
InElementOp
,
// Input Elementwise Operation
OutElementOp
,
// Output Elementwise Operation
WeiElementOp
,
// Weights Elementwise Operation
ConvFwdDefault
,
// ConvForwardSpecialization
OutElementOp
,
// Output Elementwise Operation
NumDimSpatial
,
// NumDimSpatial
ConvFwdDefault
,
// ConvForwardSpecialization
256
,
// BlockSize
NumDimSpatial
,
// NumDimSpatial
128
,
// MPerBlock
256
,
// BlockSize
256
,
// NPerBlock
128
,
// MPerBlock
4
,
// K0PerBlock
256
,
// NPerBlock
16
,
// K1
4
,
// K0PerBlock
32
,
// MPerXdl
16
,
// K1
32
,
// NPerXdl
32
,
// MPerXdl
2
,
// MXdlPerWave
32
,
// NPerXdl
4
,
// NXdlPerWave
2
,
// MXdlPerWave
S
<
4
,
64
,
1
>
,
// ABlockTransferThreadClusterLengths_K0_M_K1
4
,
// NXdlPerWave
S
<
1
,
0
,
2
>
,
// ABlockTransferThreadClusterArrangeOrder
S
<
4
,
64
,
1
>
,
// ABlockTransferThreadClusterLengths_K0_M_K1
S
<
1
,
0
,
2
>
,
// ABlockTransferSrcAccessOrder
S
<
1
,
0
,
2
>
,
// ABlockTransferThreadClusterArrangeOrder
2
,
// ABlockTransferSrcVectorDim
S
<
1
,
0
,
2
>
,
// ABlockTransferSrcAccessOrder
16
,
// ABlockTransferSrcScalarPerVector
2
,
// ABlockTransferSrcVectorDim
16
,
// ABlockTransferDstScalarPerVector_K1
16
,
// ABlockTransferSrcScalarPerVector
true
,
// ABlockLdsAddExtraM
16
,
// ABlockTransferDstScalarPerVector_K1
S
<
4
,
64
,
1
>
,
// BBlockTransferThreadClusterLengths_K0_N_K1
true
,
// ABlockLdsAddExtraM
S
<
1
,
0
,
2
>
,
// BBlockTransferThreadClusterArrangeOrder
S
<
4
,
64
,
1
>
,
// BBlockTransferThreadClusterLengths_K0_N_K1
S
<
1
,
0
,
2
>
,
// BBlockTransferSrcAccessOrder
S
<
1
,
0
,
2
>
,
// BBlockTransferThreadClusterArrangeOrder
2
,
// BBlockTransferSrcVectorDim
S
<
1
,
0
,
2
>
,
// BBlockTransferSrcAccessOrder
16
,
// BBlockTransferSrcScalarPerVector
2
,
// BBlockTransferSrcVectorDim
16
,
// BBlockTransferDstScalarPerVector_K1
16
,
// BBlockTransferSrcScalarPerVector
true
,
// BBlockLdsAddExtraN
16
,
// BBlockTransferDstScalarPerVector_K1
7
,
// CThreadTransferSrcDstVectorDim
true
,
// BBlockLdsAddExtraN
1
>
;
// CThreadTransferDstScalarPerVector
7
,
// CThreadTransferSrcDstVectorDim
1
>
;
// CThreadTransferDstScalarPerVector
template
<
ck
::
index_t
NumDimSpatial
>
template
<
ck
::
index_t
NumDimSpatial
>
using
ReferenceConvNDFwdInstance
=
ck
::
tensor_operation
::
host
::
ReferenceConvFwd
<
InDataType
,
using
ReferenceConvNDFwdInstance
=
ck
::
tensor_operation
::
host
::
ReferenceConvFwd
<
InDataType
,
...
@@ -92,253 +64,79 @@ using ReferenceConvNDFwdInstance = ck::tensor_operation::host::ReferenceConvFwd<
...
@@ -92,253 +64,79 @@ using ReferenceConvNDFwdInstance = ck::tensor_operation::host::ReferenceConvFwd<
OutElementOp
,
OutElementOp
,
NumDimSpatial
>
;
NumDimSpatial
>
;
DeviceConvFwdBasePtr
get_conv_instance
(
int
num_dim_spatial
)
{
switch
(
num_dim_spatial
)
{
case
3
:
{
return
std
::
make_unique
<
DeviceConvNDFwdInstance
<
3
>>
();
}
case
2
:
{
return
std
::
make_unique
<
DeviceConvNDFwdInstance
<
2
>>
();
}
case
1
:
{
return
std
::
make_unique
<
DeviceConvNDFwdInstance
<
1
>>
();
}
default:
{
throw
std
::
runtime_error
(
"Unsupported number of spatial dimensions provided!"
);
}
}
}
void
print_use_msg
()
{
std
::
cout
<<
"arg1: verification (0=no, 1=yes)
\n
"
<<
"arg2: initialization (0=no init, 1=integer value, 2=decimal value)
\n
"
<<
"arg3: time kernel (0=n0, 1=yes)
\n
"
<<
"arg4: N spatial dimensions (default 2)
\n
"
<<
"Following arguments (depending on number of spatial dims):
\n
"
<<
" N, K, C,
\n
"
<<
" <filter spatial dimensions>, (ie Y, X for 2D)
\n
"
<<
" <input image spatial dimensions>, (ie Hi, Wi for 2D)
\n
"
<<
" <strides>, (ie Sy, Sx for 2D)
\n
"
<<
" <dilations>, (ie Dy, Dx for 2D)
\n
"
<<
" <left padding>, (ie LeftPy, LeftPx for 2D)
\n
"
<<
" <right padding>, (ie RightPy, RightPx for 2D)
\n
"
<<
std
::
endl
;
}
ck
::
utils
::
conv
::
ConvParams
parse_conv_params
(
int
num_dim_spatial
,
int
argc
,
char
*
argv
[])
{
// (N, K, C) + num_dim_spatial * 6 (filter, input, strides, dilations, pad left, pad right)
int
conv_args
=
3
+
num_dim_spatial
*
6
;
int
cmdline_nargs
=
conv_args
+
5
;
if
(
cmdline_nargs
!=
argc
)
{
print_use_msg
();
exit
(
0
);
}
ck
::
utils
::
conv
::
ConvParams
params
;
int
arg_idx
=
5
;
params
.
num_dim_spatial_
=
num_dim_spatial
;
params
.
N_
=
std
::
stoi
(
argv
[
arg_idx
++
]);
params
.
K_
=
std
::
stoi
(
argv
[
arg_idx
++
]);
params
.
C_
=
std
::
stoi
(
argv
[
arg_idx
++
]);
params
.
filter_spatial_lengths_
.
resize
(
num_dim_spatial
);
for
(
int
i
=
0
;
i
<
num_dim_spatial
;
++
i
)
{
params
.
filter_spatial_lengths_
[
i
]
=
std
::
stoi
(
argv
[
arg_idx
++
]);
}
params
.
input_spatial_lengths_
.
resize
(
num_dim_spatial
);
for
(
int
i
=
0
;
i
<
num_dim_spatial
;
++
i
)
{
params
.
input_spatial_lengths_
[
i
]
=
std
::
stoi
(
argv
[
arg_idx
++
]);
}
params
.
conv_filter_strides_
.
resize
(
num_dim_spatial
);
for
(
int
i
=
0
;
i
<
num_dim_spatial
;
++
i
)
{
params
.
conv_filter_strides_
[
i
]
=
std
::
stoi
(
argv
[
arg_idx
++
]);
}
params
.
conv_filter_dilations_
.
resize
(
num_dim_spatial
);
for
(
int
i
=
0
;
i
<
num_dim_spatial
;
++
i
)
{
params
.
conv_filter_dilations_
[
i
]
=
std
::
stoi
(
argv
[
arg_idx
++
]);
}
params
.
input_left_pads_
.
resize
(
num_dim_spatial
);
for
(
int
i
=
0
;
i
<
num_dim_spatial
;
++
i
)
{
params
.
input_left_pads_
[
i
]
=
std
::
stoi
(
argv
[
arg_idx
++
]);
}
params
.
input_right_pads_
.
resize
(
num_dim_spatial
);
for
(
int
i
=
0
;
i
<
num_dim_spatial
;
++
i
)
{
params
.
input_right_pads_
[
i
]
=
std
::
stoi
(
argv
[
arg_idx
++
]);
}
return
params
;
}
}
// anonymous namespace
int
main
(
int
argc
,
char
*
argv
[])
int
main
(
int
argc
,
char
*
argv
[])
{
{
using
namespace
ck
::
utils
::
conv
;
print_helper_msg
()
;
bool
do_verification
=
true
;
bool
do_verification
=
true
;
int
init_method
=
1
;
int
init_method
=
1
;
bool
time_kernel
=
false
;
bool
time_kernel
=
false
;
int
num_dim_spatial
=
2
;
int
num_dim_spatial
=
2
;
ck
::
utils
::
conv
::
ConvParams
params
;
ck
::
tensor_operation
::
device
::
ConvParams
params
;
if
(
argc
>=
5
)
if
(
argc
==
1
)
{
// use default
}
else
if
(
argc
==
4
)
{
{
do_verification
=
std
::
stoi
(
argv
[
1
]);
do_verification
=
std
::
stoi
(
argv
[
1
]);
init_method
=
std
::
stoi
(
argv
[
2
]);
init_method
=
std
::
stoi
(
argv
[
2
]);
time_kernel
=
std
::
stoi
(
argv
[
3
]);
time_kernel
=
std
::
stoi
(
argv
[
3
]);
num_dim_spatial
=
std
::
stoi
(
argv
[
4
]);
}
}
else
if
(
argc
>=
6
)
{
{
do_verification
=
std
::
stoi
(
argv
[
1
]);
init_method
=
std
::
stoi
(
argv
[
2
]);
time_kernel
=
std
::
stoi
(
argv
[
3
]);
num_dim_spatial
=
std
::
stoi
(
argv
[
4
]);
params
=
parse_conv_params
(
num_dim_spatial
,
argc
,
argv
);
params
=
parse_conv_params
(
num_dim_spatial
,
argc
,
argv
);
}
}
std
::
vector
<
std
::
size_t
>
input_dims
{
static_cast
<
std
::
size_t
>
(
params
.
N_
),
if
(
num_dim_spatial
==
1
)
static_cast
<
std
::
size_t
>
(
params
.
C_
)};
input_dims
.
insert
(
std
::
end
(
input_dims
),
std
::
begin
(
params
.
input_spatial_lengths_
),
std
::
end
(
params
.
input_spatial_lengths_
));
std
::
vector
<
std
::
size_t
>
filter_dims
{
static_cast
<
std
::
size_t
>
(
params
.
K_
),
static_cast
<
std
::
size_t
>
(
params
.
C_
)};
filter_dims
.
insert
(
std
::
end
(
filter_dims
),
std
::
begin
(
params
.
filter_spatial_lengths_
),
std
::
end
(
params
.
filter_spatial_lengths_
));
const
std
::
vector
<
ck
::
index_t
>&
output_spatial_lengths
=
params
.
GetOutputSpatialLengths
();
std
::
vector
<
std
::
size_t
>
output_dims
{
static_cast
<
std
::
size_t
>
(
params
.
N_
),
static_cast
<
std
::
size_t
>
(
params
.
K_
)};
output_dims
.
insert
(
std
::
end
(
output_dims
),
std
::
begin
(
output_spatial_lengths
),
std
::
end
(
output_spatial_lengths
));
Tensor
<
InDataType
>
input
(
get_input_host_tensor_descriptor
(
input_dims
,
num_dim_spatial
));
Tensor
<
WeiDataType
>
weights
(
get_filters_host_tensor_descriptor
(
filter_dims
,
num_dim_spatial
));
Tensor
<
OutDataType
>
host_output
(
get_output_host_tensor_descriptor
(
output_dims
,
num_dim_spatial
));
Tensor
<
OutDataType
>
device_output
(
get_output_host_tensor_descriptor
(
output_dims
,
num_dim_spatial
));
std
::
cout
<<
"input: "
<<
input
.
mDesc
<<
std
::
endl
;
std
::
cout
<<
"weights: "
<<
weights
.
mDesc
<<
std
::
endl
;
std
::
cout
<<
"output: "
<<
host_output
.
mDesc
<<
std
::
endl
;
switch
(
init_method
)
{
{
case
0
:
break
;
return
run_conv_fwd
<
1
,
case
1
:
InDataType
,
input
.
GenerateTensorValue
(
GeneratorTensor_2
<
InDataType
>
{
-
5
,
5
});
WeiDataType
,
weights
.
GenerateTensorValue
(
GeneratorTensor_2
<
WeiDataType
>
{
-
5
,
5
});
OutDataType
,
break
;
AccDataType
,
default:
InElementOp
,
input
.
GenerateTensorValue
(
GeneratorTensor_3
<
InDataType
>
{
0.0
,
1.0
});
WeiElementOp
,
weights
.
GenerateTensorValue
(
GeneratorTensor_3
<
WeiDataType
>
{
-
0.5
,
0.5
});
OutElementOp
,
}
DeviceConvNDFwdInstance
<
1
>
,
ReferenceConvNDFwdInstance
<
1
>>
(
DeviceMem
in_device_buf
(
sizeof
(
InDataType
)
*
input
.
mDesc
.
GetElementSpace
());
params
,
do_verification
,
init_method
,
time_kernel
);
DeviceMem
wei_device_buf
(
sizeof
(
WeiDataType
)
*
weights
.
mDesc
.
GetElementSpace
());
}
DeviceMem
out_device_buf
(
sizeof
(
OutDataType
)
*
device_output
.
mDesc
.
GetElementSpace
());
else
if
(
num_dim_spatial
==
2
)
in_device_buf
.
ToDevice
(
input
.
mData
.
data
());
wei_device_buf
.
ToDevice
(
weights
.
mData
.
data
());
// do GEMM
auto
conv
=
get_conv_instance
(
num_dim_spatial
);
auto
invoker
=
conv
->
MakeInvokerPointer
();
auto
argument
=
conv
->
MakeArgumentPointer
(
static_cast
<
InDataType
*>
(
in_device_buf
.
GetDeviceBuffer
()),
static_cast
<
WeiDataType
*>
(
wei_device_buf
.
GetDeviceBuffer
()),
static_cast
<
OutDataType
*>
(
out_device_buf
.
GetDeviceBuffer
()),
params
.
N_
,
params
.
K_
,
params
.
C_
,
params
.
input_spatial_lengths_
,
params
.
filter_spatial_lengths_
,
output_spatial_lengths
,
params
.
conv_filter_strides_
,
params
.
conv_filter_dilations_
,
params
.
input_left_pads_
,
params
.
input_right_pads_
,
InElementOp
{},
WeiElementOp
{},
OutElementOp
{});
if
(
!
conv
->
IsSupportedArgument
(
argument
.
get
()))
{
{
throw
std
::
runtime_error
(
return
run_conv_fwd
<
2
,
"wrong! device_conv with the specified compilation parameters does "
InDataType
,
"not support this Conv problem"
);
WeiDataType
,
}
OutDataType
,
AccDataType
,
float
ave_time
=
invoker
->
Run
(
argument
.
get
(),
StreamConfig
{
nullptr
,
time_kernel
});
InElementOp
,
WeiElementOp
,
std
::
size_t
flop
=
get_flops
(
OutElementOp
,
params
.
N_
,
params
.
C_
,
params
.
K_
,
params
.
filter_spatial_lengths_
,
output_spatial_lengths
);
DeviceConvNDFwdInstance
<
2
>
,
std
::
size_t
num_btype
=
get_btype
<
InDataType
,
WeiDataType
,
OutDataType
>
(
ReferenceConvNDFwdInstance
<
2
>>
(
params
.
N_
,
params
,
do_verification
,
init_method
,
time_kernel
);
params
.
C_
,
}
params
.
K_
,
else
if
(
num_dim_spatial
==
3
)
params
.
input_spatial_lengths_
,
params
.
filter_spatial_lengths_
,
output_spatial_lengths
);
float
tflops
=
static_cast
<
float
>
(
flop
)
/
1.E9
/
ave_time
;
float
gb_per_sec
=
num_btype
/
1.E6
/
ave_time
;
std
::
cout
<<
"Perf: "
<<
ave_time
<<
" ms, "
<<
tflops
<<
" TFlops, "
<<
gb_per_sec
<<
" GB/s"
<<
std
::
endl
;
if
(
do_verification
)
{
{
auto
verify_f
=
[
&
input
,
&
weights
,
&
host_output
,
&
params
,
&
out_device_buf
,
&
device_output
](
return
run_conv_fwd
<
3
,
const
auto
&
ref_conv
)
{
InDataType
,
auto
ref_invoker
=
ref_conv
.
MakeInvoker
();
WeiDataType
,
auto
ref_argument
=
ref_conv
.
MakeArgument
(
input
,
OutDataType
,
weights
,
AccDataType
,
host_output
,
InElementOp
,
params
.
conv_filter_strides_
,
WeiElementOp
,
params
.
conv_filter_dilations_
,
OutElementOp
,
params
.
input_left_pads_
,
DeviceConvNDFwdInstance
<
3
>
,
params
.
input_right_pads_
,
ReferenceConvNDFwdInstance
<
3
>>
(
InElementOp
{},
params
,
do_verification
,
init_method
,
time_kernel
);
WeiElementOp
{},
OutElementOp
{});
ref_invoker
.
Run
(
ref_argument
);
out_device_buf
.
FromDevice
(
device_output
.
mData
.
data
());
return
ck
::
utils
::
check_err
(
host_output
.
mData
,
device_output
.
mData
,
"Error: incorrect results!"
,
1e-5
f
,
1e-4
f
)
?
0
:
1
;
};
switch
(
num_dim_spatial
)
{
case
3
:
{
auto
ref_conv
=
ReferenceConvNDFwdInstance
<
3
>
();
return
verify_f
(
ref_conv
);
}
case
2
:
{
auto
ref_conv
=
ReferenceConvNDFwdInstance
<
2
>
();
return
verify_f
(
ref_conv
);
}
case
1
:
{
auto
ref_conv
=
ReferenceConvNDFwdInstance
<
1
>
();
return
verify_f
(
ref_conv
);
}
default:
{
throw
std
::
runtime_error
(
"Unsupported number of spatial dimensions provided!"
);
}
}
}
}
return
0
;
return
0
;
}
}
example/09_convnd_fwd/parse_conv_parameter.hpp
deleted
100644 → 0
View file @
d789a53d
// SPDX-License-Identifier: MIT
// Copyright (c) 2018-2022, Advanced Micro Devices, Inc. All rights reserved.
#include <cstdlib>
#include <iostream>
#include "ck/ck.hpp"
#include "ck/library/utility/convolution_parameter.hpp"
ck
::
tensor_operation
::
device
::
ConvParams
parse_conv_params
(
int
num_dim_spatial
,
int
arg_idx
,
char
*
const
argv
[])
{
ck
::
tensor_operation
::
device
::
ConvParams
params
;
params
.
num_dim_spatial_
=
num_dim_spatial
;
params
.
N_
=
std
::
stoi
(
argv
[
arg_idx
++
]);
params
.
K_
=
std
::
stoi
(
argv
[
arg_idx
++
]);
params
.
C_
=
std
::
stoi
(
argv
[
arg_idx
++
]);
params
.
filter_spatial_lengths_
.
resize
(
num_dim_spatial
);
for
(
int
i
=
0
;
i
<
num_dim_spatial
;
++
i
)
{
params
.
filter_spatial_lengths_
[
i
]
=
std
::
stoi
(
argv
[
arg_idx
++
]);
}
params
.
input_spatial_lengths_
.
resize
(
num_dim_spatial
);
for
(
int
i
=
0
;
i
<
num_dim_spatial
;
++
i
)
{
params
.
input_spatial_lengths_
[
i
]
=
std
::
stoi
(
argv
[
arg_idx
++
]);
}
params
.
conv_filter_strides_
.
resize
(
num_dim_spatial
);
for
(
int
i
=
0
;
i
<
num_dim_spatial
;
++
i
)
{
params
.
conv_filter_strides_
[
i
]
=
std
::
stoi
(
argv
[
arg_idx
++
]);
}
params
.
conv_filter_dilations_
.
resize
(
num_dim_spatial
);
for
(
int
i
=
0
;
i
<
num_dim_spatial
;
++
i
)
{
params
.
conv_filter_dilations_
[
i
]
=
std
::
stoi
(
argv
[
arg_idx
++
]);
}
params
.
input_left_pads_
.
resize
(
num_dim_spatial
);
for
(
int
i
=
0
;
i
<
num_dim_spatial
;
++
i
)
{
params
.
input_left_pads_
[
i
]
=
std
::
stoi
(
argv
[
arg_idx
++
]);
}
params
.
input_right_pads_
.
resize
(
num_dim_spatial
);
for
(
int
i
=
0
;
i
<
num_dim_spatial
;
++
i
)
{
params
.
input_right_pads_
[
i
]
=
std
::
stoi
(
argv
[
arg_idx
++
]);
}
return
params
;
}
void
print_helper_msg
()
{
std
::
cout
<<
"arg1: verification (0=no, 1=yes)
\n
"
<<
"arg2: initialization (0=no init, 1=integer value, 2=decimal value)
\n
"
<<
"arg3: time kernel (0=n0, 1=yes)
\n
"
<<
"arg4: N spatial dimensions (default 2)
\n
"
<<
"Following arguments (depending on number of spatial dims):
\n
"
<<
" N, K, C,
\n
"
<<
" <filter spatial dimensions>, (ie Y, X for 2D)
\n
"
<<
" <input image spatial dimensions>, (ie Hi, Wi for 2D)
\n
"
<<
" <strides>, (ie Sy, Sx for 2D)
\n
"
<<
" <dilations>, (ie Dy, Dx for 2D)
\n
"
<<
" <left padding>, (ie LeftPy, LeftPx for 2D)
\n
"
<<
" <right padding>, (ie RightPy, RightPx for 2D)
\n
"
<<
std
::
endl
;
}
Write
Preview
Markdown
is supported
0%
Try again
or
attach a new file
.
Attach a file
Cancel
You are about to add
0
people
to the discussion. Proceed with caution.
Finish editing this message first!
Cancel
Please
register
or
sign in
to comment