profile_layernorm_impl.hpp 8.56 KB
Newer Older
rocking5566's avatar
rocking5566 committed
1
2
3
4
5
6
7
8
// SPDX-License-Identifier: MIT
// Copyright (c) 2018-2022, Advanced Micro Devices, Inc. All rights reserved.

#pragma once

#include <iomanip>

#include "ck/ck.hpp"
rocking5566's avatar
rocking5566 committed
9

10
#include "ck/library/tensor_operation_instance/gpu/normalization.hpp"
rocking5566's avatar
rocking5566 committed
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30

#include "ck/library/utility/check_err.hpp"
#include "ck/library/utility/device_memory.hpp"
#include "ck/library/utility/host_tensor.hpp"
#include "ck/library/utility/host_tensor_generator.hpp"
#include "ck/library/reference_tensor_operation/cpu/reference_layernorm.hpp"

namespace ck {
namespace profiler {

template <typename XDataType,
          typename GammaDataType,
          typename BetaDataType,
          typename AccDataType,
          typename YDataType,
          index_t Rank>
void profile_layernorm_impl(int do_verification,
                            int init_method,
                            bool do_log,
                            bool time_kernel,
31
                            std::vector<index_t> length)
rocking5566's avatar
rocking5566 committed
32
33
34
35
36
37
{
    using PassThrough = ck::tensor_operation::element_wise::PassThrough;

    if(length.size() < 2)
        return;

38
    // Assume normalize dimension except for batch (first) dimension
rocking5566's avatar
rocking5566 committed
39
40
41
42
43
44
    std::vector<index_t> reduce_length{length.begin() + 1, length.end()};
    std::vector<index_t> reduce_dim;
    for(int i = 1; i < Rank; ++i)
        reduce_dim.push_back(i);

    Tensor<XDataType> x(length);
45
46
47
48
49
50
51
52
53
    Tensor<GammaDataType> gamma(reduce_length);
    Tensor<BetaDataType> beta(reduce_length);
    Tensor<YDataType> y(length);
    Tensor<YDataType> host_y(length);

    std::vector<index_t> strideXY =
        std::vector<ck::index_t>{x.mDesc.GetStrides().begin(), x.mDesc.GetStrides().end()};
    std::vector<index_t> strideGammaBeta = strideXY;
    strideGammaBeta[0]                   = 0;
rocking5566's avatar
rocking5566 committed
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87

    switch(init_method)
    {
    // case 0: break;
    case 0:
        x.GenerateTensorValue(GeneratorTensor_1<XDataType>{});
        gamma.GenerateTensorValue(GeneratorTensor_1<GammaDataType>{});
        beta.GenerateTensorValue(GeneratorTensor_1<BetaDataType>{});
        y.GenerateTensorValue(GeneratorTensor_1<YDataType>{});
        break;
    case 1:
        x.GenerateTensorValue(GeneratorTensor_2<XDataType>{-5, 5});
        gamma.GenerateTensorValue(GeneratorTensor_2<GammaDataType>{-5, 5});
        beta.GenerateTensorValue(GeneratorTensor_2<BetaDataType>{-5, 5});
        y.GenerateTensorValue(GeneratorTensor_2<YDataType>{-5, 5});
        break;
    default:
        x.GenerateTensorValue(GeneratorTensor_3<XDataType>{0, 1});
        gamma.GenerateTensorValue(GeneratorTensor_3<GammaDataType>{-0.5, 0.5});
        beta.GenerateTensorValue(GeneratorTensor_3<BetaDataType>{-0.5, 0.5});
        y.GenerateTensorValue(GeneratorTensor_3<YDataType>{-0.5, 0.5});
    }

    DeviceMem x_dev(sizeof(XDataType) * x.mDesc.GetElementSpaceSize());
    DeviceMem gamma_dev(sizeof(GammaDataType) * gamma.mDesc.GetElementSpaceSize());
    DeviceMem beta_dev(sizeof(BetaDataType) * beta.mDesc.GetElementSpaceSize());
    DeviceMem y_dev(sizeof(YDataType) * y.mDesc.GetElementSpaceSize());

    x_dev.ToDevice(x.mData.data());
    gamma_dev.ToDevice(gamma.mData.data());
    beta_dev.ToDevice(beta.mData.data());

    constexpr int NumReduceDim = Rank - 1;

rocking5566's avatar
rocking5566 committed
88
    // add device normalization instances
89
90
91
92
93
94
95
96
    using DeviceOp = ck::tensor_operation::device::DeviceNormalization<XDataType,
                                                                       GammaDataType,
                                                                       BetaDataType,
                                                                       AccDataType,
                                                                       YDataType,
                                                                       PassThrough,
                                                                       Rank,
                                                                       NumReduceDim>;
rocking5566's avatar
rocking5566 committed
97
98
99
100
101
102
103

    // get device op instances
    const auto instance_ptrs =
        ck::tensor_operation::device::instance::DeviceOperationInstanceFactory<
            DeviceOp>::GetInstances();

    std::cout << "found " << instance_ptrs.size() << " instances" << std::endl;
rocking5566's avatar
rocking5566 committed
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126

    std::string best_instance_name;
    float best_avg_time   = std::numeric_limits<float>::max();
    float best_gb_per_sec = 0;

    if(do_verification)
    {
        using ReferenceInstance = ck::tensor_operation::host::ReferenceLayernorm<XDataType,
                                                                                 GammaDataType,
                                                                                 BetaDataType,
                                                                                 YDataType,
                                                                                 AccDataType,
                                                                                 PassThrough,
                                                                                 Rank,
                                                                                 NumReduceDim>;

        ReferenceInstance ref;
        auto ref_argument =
            ref.MakeArgument(x, gamma, beta, host_y, PassThrough{}, length, reduce_dim, 1e-4);
        auto ref_invoker = ref.MakeInvoker();
        ref_invoker.Run(ref_argument);
    }

rocking5566's avatar
rocking5566 committed
127
    for(auto& inst_ptr : instance_ptrs)
rocking5566's avatar
rocking5566 committed
128
129
130
    {
        auto argument_ptr = inst_ptr->MakeArgumentPointer(length,
                                                          strideXY,
131
132
                                                          strideGammaBeta,
                                                          strideGammaBeta,
rocking5566's avatar
rocking5566 committed
133
                                                          strideXY,
rocking5566's avatar
rocking5566 committed
134
135
136
137
138
139
140
141
142
143
144
                                                          reduce_dim,
                                                          1e-4,
                                                          x_dev.GetDeviceBuffer(),
                                                          gamma_dev.GetDeviceBuffer(),
                                                          beta_dev.GetDeviceBuffer(),
                                                          y_dev.GetDeviceBuffer(),
                                                          PassThrough{});

        if(!inst_ptr->IsSupportedArgument(argument_ptr.get()))
        {
            std::cout << inst_ptr->GetTypeString() << " skipped due to unsupported argument: ";
rocking5566's avatar
rocking5566 committed
145
            LogRange(std::cout << "input lengths = ", length, ", ") << std::endl;
rocking5566's avatar
rocking5566 committed
146

rocking5566's avatar
rocking5566 committed
147
            continue;
rocking5566's avatar
rocking5566 committed
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
        }

        auto invoker_ptr = inst_ptr->MakeInvokerPointer();

        float avg_time = invoker_ptr->Run(argument_ptr.get(), StreamConfig{nullptr, time_kernel});

        std::size_t num_bytes = x.mDesc.GetElementSize() * sizeof(XDataType) +
                                gamma.mDesc.GetElementSize() * sizeof(GammaDataType) +
                                beta.mDesc.GetElementSize() * sizeof(BetaDataType) +
                                y.mDesc.GetElementSize() * sizeof(YDataType);

        float gb_per_sec = num_bytes / 1.E6 / avg_time;

        std::cout << "Perf: " << std::setw(10) << avg_time << " ms, " << gb_per_sec << " GB/s, "
                  << inst_ptr->GetTypeString() << std::endl;

        if(avg_time < best_avg_time)
        {
            best_instance_name = inst_ptr->GetTypeString();
            best_avg_time      = avg_time;
            best_gb_per_sec    = gb_per_sec;
        }

        if(do_verification)
        {
            y_dev.FromDevice(y.mData.data());

            bool pass = ck::utils::check_err(
                y.mData, host_y.mData, "Error: Incorrect results d1", 1e-3, 1e-3);

            if(do_log)
            {
                LogRangeAsType<float>(std::cout << "x  : ", x.mData, ",") << std::endl;
                LogRangeAsType<float>(std::cout << "host_y  : ", host_y.mData, ",") << std::endl;
                LogRangeAsType<float>(std::cout << "y  : ", y.mData, ",") << std::endl;
            }

            if(!pass)
            {
                std::cout << inst_ptr->GetTypeString() << " failed verification: ";
                LogRange(std::cout << "lengths = [", length, ", ") << "]." << std::endl;
                return;
            }
            else
            {
                std::cout << "pass" << std::endl;
            }
        }
    }

    LogRange(std::cout << "length = ", length, ",") << ", ";
    LogRange(std::cout << "stride = ", strideXY, ",") << ", ";
    LogRange(std::cout << "reduce dims ", reduce_dim, ",") << std::endl;
    std::cout << "best perf = " << best_avg_time << " ms, " << best_gb_per_sec << " GB/s, "
              << best_instance_name << std::endl;
}

} // namespace profiler
} // namespace ck