gemm_xdl_fp16.cpp 10.4 KB
Newer Older
1
2
3
4
5
6
#include <iostream>
#include <numeric>
#include <initializer_list>
#include <cstdlib>
#include <stdlib.h>
#include <half.hpp>
7
#include "check_err.hpp"
8
9
10
11
12
#include "config.hpp"
#include "device.hpp"
#include "host_tensor.hpp"
#include "host_tensor_generator.hpp"
#include "device_tensor.hpp"
Chao Liu's avatar
Chao Liu committed
13
#include "device_gemm_xdl.hpp"
Chao Liu's avatar
Chao Liu committed
14
#include "device_gemm_xdl_cshuffle.hpp"
Chao Liu's avatar
Chao Liu committed
15
#include "element_wise_operation.hpp"
Chao Liu's avatar
Chao Liu committed
16
#include "reference_gemm.hpp"
Chao Liu's avatar
Chao Liu committed
17
#include "gemm_specialization.hpp"
Chao Liu's avatar
Chao Liu committed
18

Chao Liu's avatar
Chao Liu committed
19
20
21
template <ck::index_t... Is>
using S = ck::Sequence<Is...>;

Chao Liu's avatar
Chao Liu committed
22
23
24
25
26
27
28
29
using F16 = ck::half_t;
using F32 = float;

using Row = ck::tensor_layout::gemm::RowMajor;
using Col = ck::tensor_layout::gemm::ColumnMajor;

using PassThrough = ck::tensor_operation::element_wise::PassThrough;

Chao Liu's avatar
Chao Liu committed
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
struct Gelu
{
    __host__ __device__ void operator()(float& y, const float& x) const
    {
        // Y=0.5*X*(1+tanh(0.797885*X+0.035677*X*X*X))
        const float a = float(0.035677) * x * x;
        const float b = float(0.797885) + a;
        const float c = b * x;
        const float d = tanh(c);
        const float e = float(1.0) + d;
        y       = float(0.5) * x * e;
    }
};

struct FastGelu
{
    __host__ void operator()(float& y, const float& x) const
    {
        // Y=0.5*X*(1+tanh(0.797885*X+0.035677*X*X*X))
        const float a = float(0.035677) * x * x;
        const float b = float(0.797885) + a;
        const float c = b * x;
        const float d = tanh(c);
        const float e = float(1.0) + d;
        y       = float(0.5) * x * e;
    }

    __device__ void operator()(float& y, const float& x) const
    {
        // const T cdf = a + a * _Tanh(in * (c * in * in + b));
        const float u = float(2) * x * (float(0.035677) * x * x + float(0.797885));
        const float emu = exp(-u);
        const float cdf = float(0.5) + float(0.5) * (float(2)/(float(1) + emu) - float(1));

        y = x * cdf;
    }
};

Chao Liu's avatar
Chao Liu committed
68
69
70
71
72
73
74
75
76
using ADataType   = ck::half_t;
using BDataType   = ck::half_t;
using CDataType   = ck::half_t;
using AccDataType = float;

using ALayout = ck::tensor_layout::gemm::RowMajor;
using BLayout = ck::tensor_layout::gemm::ColumnMajor;
using CLayout = ck::tensor_layout::gemm::RowMajor;

Chao Liu's avatar
Chao Liu committed
77
78
using AElementOp = ck::tensor_operation::element_wise::PassThrough;
using BElementOp = ck::tensor_operation::element_wise::PassThrough;
Chao Liu's avatar
Chao Liu committed
79
#if 0
Chao Liu's avatar
Chao Liu committed
80
using CElementOp = ck::tensor_operation::element_wise::PassThrough;
Chao Liu's avatar
Chao Liu committed
81
82
83
#else
using CElementOp = FastGelu;
#endif
Chao Liu's avatar
Chao Liu committed
84

85
static constexpr auto GemmDefault = ck::tensor_operation::device::GemmSpecialization::Default;
Chao Liu's avatar
Chao Liu committed
86

Chao Liu's avatar
Chao Liu committed
87
// clang-format off
Chao Liu's avatar
Chao Liu committed
88
using DeviceGemmInstance = ck::tensor_operation::device::DeviceGemm_Xdl_CShuffle
Chao Liu's avatar
Chao Liu committed
89
90
91
92
93
//######| ALayout| BLayout| CLayout| AData| BData| CData| AccData| CShuffle|           A|           B|           C|           GEMM| NumGemmK| Block|  MPer|  NPer|  KPer| AK1| BK1| MPer| NPer| MXdl| NXdl|  ABlockTransfer| ABlockTransfer| ABlockTransfer| ABlockTransfer| ABlockTransfer| ABlockTransfer| ABlockLds|  BBlockTransfer| BBlockTransfer| BBlockTransfer| BlockTransfer| BBlockTransfer| BBlockTransfer| BBlockLds|    CShuffle|    CShuffle| CBlockTransferClusterLengths|  CBlockTransfer|
//######|        |        |        |  Type|  Type|  Type|    Type| DataType| Elementwise| Elementwise| Elementwise| Spacialization| Prefetch|  Size| Block| Block| Block|    |    |  XDL|  XDL|  Per|  Per|   ThreadCluster|  ThreadCluster| SrcAccessOrder|   SrcVectorDim|      SrcScalar|      DstScalar| AddExtraM|   ThreadCluster|  ThreadCluster| SrcAccessOrder|  SrcVectorDim|      SrcScalar|      DstScalar| AddExtraN| MXdlPerWave| NXdlPerWave|         _MBlock_MWaveMPerXdl| ScalarPerVector|
//######|        |        |        |      |      |      |        |         |   Operation|   Operation|   Operation|               |    Stage|      |      |      |      |    |    |     |     | Wave| Wave| Lengths_K0_M_K1|   ArrangeOrder|               |               |      PerVector|   PerVector_K1|          | Lengths_K0_N_K1|   ArrangeOrder|               |              |      PerVector|   PerVector_K1|          |  PerShuffle|  PerShuffle|         _NBlock_NWaveNPerXdl|   _NWaveNPerXdl|
//######|        |        |        |      |      |      |        |         |            |            |            |               |         |      |      |      |      |    |    |     |     |     |     |                |               |               |               |               |               |          |                |               |               |              |               |               |          |            |            |                             |                |
        <     Row,     Col,     Row,   F16,   F16,   F16,     F32,      F32,  AElementOp,  BElementOp,  CElementOp,    GemmDefault,        1,   256,   256,   128,    32,   8,   8,   32,   32,    4,    2,     S<4, 64, 1>,     S<1, 0, 2>,     S<1, 0, 2>,              2,              8,              8,         1,     S<4, 64, 1>,     S<1, 0, 2>,     S<1, 0, 2>,             2,              8,              8,         1,           1,           1,               S<1, 32, 1, 8>,               8>;
Chao Liu's avatar
Chao Liu committed
94
95
// clang-format on

Chao Liu's avatar
Chao Liu committed
96
97
using ReferenceGemmInstance = ck::tensor_operation::host::
    ReferenceGemm<ADataType, BDataType, CDataType, AElementOp, BElementOp, CElementOp>;
98
99
100

int main(int argc, char* argv[])
{
JD's avatar
JD committed
101
102
103
    bool do_verification = true;
    int init_method      = 1;
    bool time_kernel     = false;
104
105
106
107
108
109
110
111
112
113

    // GEMM shape
    ck::index_t M = 3840;
    ck::index_t N = 4096;
    ck::index_t K = 4096;

    ck::index_t StrideA = 4096;
    ck::index_t StrideB = 4096;
    ck::index_t StrideC = 4096;

Chao Liu's avatar
Chao Liu committed
114
115
    if(argc == 4)
    {
116
117
        do_verification = std::stoi(argv[1]);
        init_method     = std::stoi(argv[2]);
JD's avatar
JD committed
118
        time_kernel     = std::stoi(argv[3]);
Chao Liu's avatar
Chao Liu committed
119
120
121
122
123
    }
    else if(argc == 10)
    {
        do_verification = std::stoi(argv[1]);
        init_method     = std::stoi(argv[2]);
JD's avatar
JD committed
124
        time_kernel     = std::stoi(argv[3]);
Chao Liu's avatar
Chao Liu committed
125
126
127
128

        M = std::stoi(argv[4]);
        N = std::stoi(argv[5]);
        K = std::stoi(argv[6]);
129

Chao Liu's avatar
Chao Liu committed
130
131
132
133
134
135
136
137
        StrideA = std::stoi(argv[7]);
        StrideB = std::stoi(argv[8]);
        StrideC = std::stoi(argv[9]);
    }
    else
    {
        printf("arg1: verification (0=no, 1=yes)\n");
        printf("arg2: initialization (0=no init, 1=integer value, 2=decimal value)\n");
JD's avatar
JD committed
138
        printf("arg3: time kernel (0=n0, 1=yes)\n");
Chao Liu's avatar
Chao Liu committed
139
140
141
        printf("arg4 to 9: M (256x), N(128x), K(32x), StrideA, StrideB, StrideC\n");
        exit(0);
    }
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158

    auto f_host_tensor_descriptor =
        [](std::size_t row, std::size_t col, std::size_t stride, auto layout) {
            if(std::is_same<decltype(layout), ck::tensor_layout::gemm::RowMajor>::value)
            {
                return HostTensorDescriptor(std::vector<std::size_t>({row, col}),
                                            std::vector<std::size_t>({stride, 1}));
            }
            else
            {
                return HostTensorDescriptor(std::vector<std::size_t>({row, col}),
                                            std::vector<std::size_t>({1, stride}));
            }
        };

    Tensor<ADataType> a_m_k(f_host_tensor_descriptor(M, K, StrideA, ALayout{}));
    Tensor<BDataType> b_k_n(f_host_tensor_descriptor(K, N, StrideB, BLayout{}));
159
160
    Tensor<CDataType> c_m_n_host_result(f_host_tensor_descriptor(M, N, StrideC, CLayout{}));
    Tensor<CDataType> c_m_n_device_result(f_host_tensor_descriptor(M, N, StrideC, CLayout{}));
161
162
163
164
165
166
167
168
169

    std::cout << "a_m_k: " << a_m_k.mDesc << std::endl;
    std::cout << "b_k_n: " << b_k_n.mDesc << std::endl;
    std::cout << "c_m_n: " << c_m_n_host_result.mDesc << std::endl;

    switch(init_method)
    {
    case 0: break;
    case 1:
170
171
        a_m_k.GenerateTensorValue(GeneratorTensor_2<ADataType>{-5, 5});
        b_k_n.GenerateTensorValue(GeneratorTensor_2<BDataType>{-5, 5});
172
        break;
173
    case 2:
174
175
        a_m_k.GenerateTensorValue(GeneratorTensor_3<ADataType>{0.0, 1.0});
        b_k_n.GenerateTensorValue(GeneratorTensor_3<BDataType>{-0.5, 0.5});
176
177
178
179
        break;
    default:
        a_m_k.GenerateTensorValue(GeneratorTensor_Sequential<0>{});
        b_k_n.GenerateTensorValue(GeneratorTensor_Sequential<1>{});
180
181
182
183
184
185
186
187
188
    }

    DeviceMem a_m_k_device_buf(sizeof(ADataType) * a_m_k.mDesc.GetElementSpace());
    DeviceMem b_k_n_device_buf(sizeof(BDataType) * b_k_n.mDesc.GetElementSpace());
    DeviceMem c_m_n_device_buf(sizeof(CDataType) * c_m_n_device_result.mDesc.GetElementSpace());

    a_m_k_device_buf.ToDevice(a_m_k.mData.data());
    b_k_n_device_buf.ToDevice(b_k_n.mData.data());

Chao Liu's avatar
Chao Liu committed
189
190
191
192
    auto a_element_op = AElementOp{};
    auto b_element_op = BElementOp{};
    auto c_element_op = CElementOp{};

193
    // do GEMM
Chao Liu's avatar
Chao Liu committed
194
    auto gemm     = DeviceGemmInstance{};
195
196
197
198
199
200
201
202
203
    auto invoker  = gemm.MakeInvoker();
    auto argument = gemm.MakeArgument(static_cast<ADataType*>(a_m_k_device_buf.GetDeviceBuffer()),
                                      static_cast<BDataType*>(b_k_n_device_buf.GetDeviceBuffer()),
                                      static_cast<CDataType*>(c_m_n_device_buf.GetDeviceBuffer()),
                                      M,
                                      N,
                                      K,
                                      StrideA,
                                      StrideB,
Chao Liu's avatar
Chao Liu committed
204
                                      StrideC,
Chao Liu's avatar
Chao Liu committed
205
206
207
                                      a_element_op,
                                      b_element_op,
                                      c_element_op);
208
209
210
211
212
213
214
215

    if(!gemm.IsSupportedArgument(argument))
    {
        throw std::runtime_error(
            "wrong! device_gemm with the specified compilation parameters does "
            "not support this GEMM problem");
    }

JD's avatar
JD committed
216
    float ave_time = invoker.Run(argument, StreamConfig{nullptr, time_kernel});
217
218
219

    std::size_t flop = std::size_t(2) * M * N * K;
    std::size_t num_btype =
Chao Liu's avatar
Chao Liu committed
220
        sizeof(ADataType) * M * K + sizeof(BDataType) * K * N + sizeof(CDataType) * M * N;
221
222
223
224
225

    float tflops = static_cast<float>(flop) / 1.E9 / ave_time;

    float gb_per_sec = num_btype / 1.E6 / ave_time;

Chao Liu's avatar
Chao Liu committed
226
227
    std::cout << "Perf: " << ave_time << " ms, " << tflops << " TFlops, " << gb_per_sec << " GB/s, "
              << gemm.GetTypeString() << std::endl;
228
229
230
231
232

    c_m_n_device_buf.FromDevice(c_m_n_device_result.mData.data());

    if(do_verification)
    {
Chao Liu's avatar
Chao Liu committed
233
234
235
236
237
238
239
        auto ref_gemm    = ReferenceGemmInstance{};
        auto ref_invoker = ref_gemm.MakeInvoker();

        auto ref_argument = ref_gemm.MakeArgument(
            a_m_k, b_k_n, c_m_n_host_result, a_element_op, b_element_op, c_element_op);

        ref_invoker.Run(ref_argument);
240

Anthony Chang's avatar
Anthony Chang committed
241
        return ck::utils::check_err(c_m_n_device_result.mData, c_m_n_host_result.mData) ? 0 : 1;
242
    }
Jianfeng Yan's avatar
Jianfeng Yan committed
243
244

    return 0;
245
}