convnd_fwd_common.hpp 12.9 KB
Newer Older
Chao Liu's avatar
Chao Liu committed
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
// SPDX-License-Identifier: MIT
// Copyright (c) 2018-2022, Advanced Micro Devices, Inc. All rights reserved.

#include <cstdlib>
#include <iostream>
#include <numeric>
#include <type_traits>

#include "ck/ck.hpp"
#include "ck/tensor_operation/gpu/device/tensor_layout.hpp"
#include "ck/tensor_operation/gpu/element/element_wise_operation.hpp"

#include "ck/library/utility/check_err.hpp"
#include "ck/library/utility/device_memory.hpp"
#include "ck/library/utility/host_tensor.hpp"
#include "ck/library/utility/host_tensor_generator.hpp"
Chao Liu's avatar
Chao Liu committed
17
#include "ck/library/utility/convolution_parameter.hpp"
Chao Liu's avatar
clean  
Chao Liu committed
18
#include "ck/library/utility/convolution_host_tensor_descriptor_helper.hpp"
Chao Liu's avatar
Chao Liu committed
19
#include "ck/library/reference_tensor_operation/cpu/reference_conv_fwd.hpp"
Chao Liu's avatar
Chao Liu committed
20

Chao Liu's avatar
Chao Liu committed
21
22
23
24
25
26
27
28
29
void print_helper_msg()
{
    std::cout << "arg1: verification (0=no, 1=yes)\n"
              << "arg2: initialization (0=no init, 1=integer value, 2=decimal value)\n"
              << "arg3: time kernel (0=no, 1=yes)\n"
              << "arg4: N spatial dimensions (default 2)\n"
              << "Following arguments (depending on number of spatial dims):\n"
              << " N, K, C, \n"
              << " <filter spatial dimensions>, (ie Y, X for 2D)\n"
Chao Liu's avatar
Chao Liu committed
30
              << " <input image spatial dimensions>, (ie Hi, Wi for 2D)\n"
Chao Liu's avatar
Chao Liu committed
31
32
33
34
35
36
37
              << " <strides>, (ie Sy, Sx for 2D)\n"
              << " <dilations>, (ie Dy, Dx for 2D)\n"
              << " <left padding>, (ie LeftPy, LeftPx for 2D)\n"
              << " <right padding>, (ie RightPy, RightPx for 2D)\n"
              << std::endl;
}

Chao Liu's avatar
clean  
Chao Liu committed
38
ck::utils::conv::ConvParam parse_conv_params(int num_dim_spatial, int arg_idx, char* const argv[])
Chao Liu's avatar
Chao Liu committed
39
{
Chao Liu's avatar
Chao Liu committed
40
41
42
    const ck::index_t N = std::stoi(argv[arg_idx++]);
    const ck::index_t K = std::stoi(argv[arg_idx++]);
    const ck::index_t C = std::stoi(argv[arg_idx++]);
Chao Liu's avatar
Chao Liu committed
43

Chao Liu's avatar
Chao Liu committed
44
45
46
47
48
49
    std::vector<ck::index_t> filter_spatial_lengths(num_dim_spatial);
    std::vector<ck::index_t> input_spatial_lengths(num_dim_spatial);
    std::vector<ck::index_t> conv_filter_strides(num_dim_spatial);
    std::vector<ck::index_t> conv_filter_dilations(num_dim_spatial);
    std::vector<ck::index_t> input_left_pads(num_dim_spatial);
    std::vector<ck::index_t> input_right_pads(num_dim_spatial);
Chao Liu's avatar
Chao Liu committed
50
51
52

    for(int i = 0; i < num_dim_spatial; ++i)
    {
Chao Liu's avatar
Chao Liu committed
53
        filter_spatial_lengths[i] = std::stoi(argv[arg_idx++]);
Chao Liu's avatar
Chao Liu committed
54
    }
Chao Liu's avatar
Chao Liu committed
55

Chao Liu's avatar
Chao Liu committed
56
57
    for(int i = 0; i < num_dim_spatial; ++i)
    {
Chao Liu's avatar
Chao Liu committed
58
        input_spatial_lengths[i] = std::stoi(argv[arg_idx++]);
Chao Liu's avatar
Chao Liu committed
59
    }
Chao Liu's avatar
Chao Liu committed
60

Chao Liu's avatar
Chao Liu committed
61
62
    for(int i = 0; i < num_dim_spatial; ++i)
    {
Chao Liu's avatar
Chao Liu committed
63
        conv_filter_strides[i] = std::stoi(argv[arg_idx++]);
Chao Liu's avatar
Chao Liu committed
64
    }
Chao Liu's avatar
Chao Liu committed
65

Chao Liu's avatar
Chao Liu committed
66
67
    for(int i = 0; i < num_dim_spatial; ++i)
    {
Chao Liu's avatar
Chao Liu committed
68
        conv_filter_dilations[i] = std::stoi(argv[arg_idx++]);
Chao Liu's avatar
Chao Liu committed
69
    }
Chao Liu's avatar
Chao Liu committed
70

Chao Liu's avatar
Chao Liu committed
71
72
    for(int i = 0; i < num_dim_spatial; ++i)
    {
Chao Liu's avatar
Chao Liu committed
73
        input_left_pads[i] = std::stoi(argv[arg_idx++]);
Chao Liu's avatar
Chao Liu committed
74
    }
Chao Liu's avatar
Chao Liu committed
75

Chao Liu's avatar
Chao Liu committed
76
77
    for(int i = 0; i < num_dim_spatial; ++i)
    {
Chao Liu's avatar
Chao Liu committed
78
        input_right_pads[i] = std::stoi(argv[arg_idx++]);
Chao Liu's avatar
Chao Liu committed
79
80
    }

Chao Liu's avatar
clean  
Chao Liu committed
81
82
83
84
85
86
87
88
89
90
    return ck::utils::conv::ConvParam{num_dim_spatial,
                                      N,
                                      K,
                                      C,
                                      filter_spatial_lengths,
                                      input_spatial_lengths,
                                      conv_filter_strides,
                                      conv_filter_dilations,
                                      input_left_pads,
                                      input_right_pads};
Chao Liu's avatar
Chao Liu committed
91
92
}

Chao Liu's avatar
Chao Liu committed
93
// FIXME: current implementation only support NCHW/NHWC layout
Chao Liu's avatar
Chao Liu committed
94
template <ck::index_t NDimSpatial,
Chao Liu's avatar
Chao Liu committed
95
96
97
          typename InLayout,
          typename WeiLayout,
          typename OutLayout,
Chao Liu's avatar
Chao Liu committed
98
99
100
101
102
103
          typename InDataType,
          typename WeiDataType,
          typename OutDataType,
          typename InElementOp,
          typename WeiElementOp,
          typename OutElementOp,
Chao Liu's avatar
Chao Liu committed
104
          typename DeviceConvNDFwdInstance>
Chao Liu's avatar
Chao Liu committed
105
106
107
int run_conv_fwd(bool do_verification,
                 int init_method,
                 bool time_kernel,
Chao Liu's avatar
clean  
Chao Liu committed
108
                 const ck::utils::conv::ConvParam& conv_param,
Chao Liu's avatar
Chao Liu committed
109
110
111
                 const InElementOp& in_element_op,
                 const WeiElementOp& wei_element_op,
                 const OutElementOp& out_element_op)
Chao Liu's avatar
Chao Liu committed
112
{
Chao Liu's avatar
clean  
Chao Liu committed
113
114
115
    const auto in_desc  = ck::utils::conv::get_input_host_tensor_descriptor<InLayout>(conv_param);
    const auto wei_desc = ck::utils::conv::get_weight_host_tensor_descriptor<WeiLayout>(conv_param);
    const auto out_desc = ck::utils::conv::get_output_host_tensor_descriptor<OutLayout>(conv_param);
Chao Liu's avatar
Chao Liu committed
116
117
118
119
120

    Tensor<InDataType> in(in_desc);
    Tensor<WeiDataType> wei(wei_desc);
    Tensor<OutDataType> out_host(out_desc);
    Tensor<OutDataType> out_device(out_desc);
Chao Liu's avatar
Chao Liu committed
121

Chao Liu's avatar
Chao Liu committed
122
123
124
    std::cout << "in: " << in.mDesc << std::endl;
    std::cout << "wei: " << wei.mDesc << std::endl;
    std::cout << "out: " << out_host.mDesc << std::endl;
Chao Liu's avatar
Chao Liu committed
125
126
127
128
129

    switch(init_method)
    {
    case 0: break;
    case 1:
Chao Liu's avatar
Chao Liu committed
130
131
        in.GenerateTensorValue(GeneratorTensor_2<InDataType>{-5, 5});
        wei.GenerateTensorValue(GeneratorTensor_2<WeiDataType>{-5, 5});
Chao Liu's avatar
Chao Liu committed
132
133
        break;
    default:
Chao Liu's avatar
Chao Liu committed
134
135
        in.GenerateTensorValue(GeneratorTensor_3<InDataType>{0.0, 1.0});
        wei.GenerateTensorValue(GeneratorTensor_3<WeiDataType>{-0.5, 0.5});
Chao Liu's avatar
Chao Liu committed
136
137
    }

Chao Liu's avatar
Chao Liu committed
138
139
140
    DeviceMem in_device_buf(sizeof(InDataType) * in.mDesc.GetElementSpace());
    DeviceMem wei_device_buf(sizeof(WeiDataType) * wei.mDesc.GetElementSpace());
    DeviceMem out_device_buf(sizeof(OutDataType) * out_device.mDesc.GetElementSpace());
Chao Liu's avatar
Chao Liu committed
141

Chao Liu's avatar
Chao Liu committed
142
143
    in_device_buf.ToDevice(in.mData.data());
    wei_device_buf.ToDevice(wei.mData.data());
Chao Liu's avatar
Chao Liu committed
144

Chao Liu's avatar
Chao Liu committed
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
    // tensor descriptor in NCHW/KXYC/NKHW dimensional order
    HostTensorDescriptor in_n_c_wis_desc  = in_desc;
    HostTensorDescriptor wei_k_c_xs_desc  = wei_desc;
    HostTensorDescriptor out_n_k_wos_desc = out_desc;

    // input
    if constexpr(ck::is_same_v<InLayout, ck::tensor_layout::convolution::NWC>)
    {
        in_n_c_wis_desc = transpose_host_tensor_descriptor_given_new2old(
            in_desc, std::vector<std::size_t>{0, 2, 1});
    }
    else if constexpr(ck::is_same_v<InLayout, ck::tensor_layout::convolution::NHWC>)
    {
        in_n_c_wis_desc = transpose_host_tensor_descriptor_given_new2old(
            in_desc, std::vector<std::size_t>{0, 3, 1, 2});
    }
    else if constexpr(ck::is_same_v<InLayout, ck::tensor_layout::convolution::NDHWC>)
    {
        in_n_c_wis_desc = transpose_host_tensor_descriptor_given_new2old(
            in_desc, std::vector<std::size_t>{0, 4, 1, 2, 3});
    }

    // weight
    if constexpr(ck::is_same_v<WeiLayout, ck::tensor_layout::convolution::KXC>)
    {
        wei_k_c_xs_desc = transpose_host_tensor_descriptor_given_new2old(
            wei_desc, std::vector<std::size_t>{0, 2, 1});
    }
    else if constexpr(ck::is_same_v<WeiLayout, ck::tensor_layout::convolution::KYXC>)
    {
        wei_k_c_xs_desc = transpose_host_tensor_descriptor_given_new2old(
            wei_desc, std::vector<std::size_t>{0, 3, 1, 2});
    }
    else if constexpr(ck::is_same_v<WeiLayout, ck::tensor_layout::convolution::KZYXC>)
    {
        wei_k_c_xs_desc = transpose_host_tensor_descriptor_given_new2old(
            wei_desc, std::vector<std::size_t>{0, 4, 1, 2, 3});
    }

    // output
    if constexpr(ck::is_same_v<OutLayout, ck::tensor_layout::convolution::NWK>)
    {
        out_n_k_wos_desc = transpose_host_tensor_descriptor_given_new2old(
            out_desc, std::vector<std::size_t>{0, 2, 1});
    }
    else if constexpr(ck::is_same_v<OutLayout, ck::tensor_layout::convolution::NHWK>)
    {
        out_n_k_wos_desc = transpose_host_tensor_descriptor_given_new2old(
            out_desc, std::vector<std::size_t>{0, 3, 1, 2});
    }
    else if constexpr(ck::is_same_v<OutLayout, ck::tensor_layout::convolution::NDHWK>)
    {
        out_n_k_wos_desc = transpose_host_tensor_descriptor_given_new2old(
            out_desc, std::vector<std::size_t>{0, 4, 1, 2, 3});
    }

    std::array<ck::index_t, NDimSpatial + 2> a_n_c_wis_lengths{};
    std::array<ck::index_t, NDimSpatial + 2> a_n_c_wis_strides{};
    std::array<ck::index_t, NDimSpatial + 2> b_k_c_xs_lengths{};
    std::array<ck::index_t, NDimSpatial + 2> b_k_c_xs_strides{};
    std::array<ck::index_t, NDimSpatial + 2> e_n_k_wos_lengths{};
    std::array<ck::index_t, NDimSpatial + 2> e_n_k_wos_strides{};
    std::array<ck::index_t, NDimSpatial> conv_filter_strides{};
    std::array<ck::index_t, NDimSpatial> conv_filter_dilations{};
    std::array<ck::index_t, NDimSpatial> input_left_pads{};
    std::array<ck::index_t, NDimSpatial> input_right_pads{};

    auto copy = [](auto& x, auto& y) { std::copy(x.begin(), x.end(), y.begin()); };

    copy(in_n_c_wis_desc.GetLengths(), a_n_c_wis_lengths);
    copy(in_n_c_wis_desc.GetStrides(), a_n_c_wis_strides);
    copy(wei_k_c_xs_desc.GetLengths(), b_k_c_xs_lengths);
    copy(wei_k_c_xs_desc.GetStrides(), b_k_c_xs_strides);
    copy(out_n_k_wos_desc.GetLengths(), e_n_k_wos_lengths);
    copy(out_n_k_wos_desc.GetStrides(), e_n_k_wos_strides);
    copy(conv_param.conv_filter_strides_, conv_filter_strides);
    copy(conv_param.conv_filter_dilations_, conv_filter_dilations);
    copy(conv_param.input_left_pads_, input_left_pads);
    copy(conv_param.input_right_pads_, input_right_pads);

Chao Liu's avatar
Chao Liu committed
225
226
227
    // do GEMM
    auto conv     = DeviceConvNDFwdInstance{};
    auto invoker  = conv.MakeInvoker();
Chao Liu's avatar
Chao Liu committed
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
    auto argument = conv.MakeArgument(in_device_buf.GetDeviceBuffer(),
                                      wei_device_buf.GetDeviceBuffer(),
                                      std::array<const void*, 0>{},
                                      out_device_buf.GetDeviceBuffer(),
                                      a_n_c_wis_lengths,
                                      a_n_c_wis_strides,
                                      b_k_c_xs_lengths,
                                      b_k_c_xs_strides,
                                      std::array<std::array<ck::index_t, NDimSpatial + 2>, 0>{{}},
                                      std::array<std::array<ck::index_t, NDimSpatial + 2>, 0>{{}},
                                      e_n_k_wos_lengths,
                                      e_n_k_wos_strides,
                                      conv_filter_strides,
                                      conv_filter_dilations,
                                      input_left_pads,
                                      input_right_pads,
Chao Liu's avatar
Chao Liu committed
244
245
246
                                      in_element_op,
                                      wei_element_op,
                                      out_element_op);
Chao Liu's avatar
Chao Liu committed
247
248
249
250
251
252
253
254

    if(!conv.IsSupportedArgument(argument))
    {
        throw std::runtime_error(
            "wrong! device_conv with the specified compilation parameters does "
            "not support this Conv problem");
    }

Chao Liu's avatar
Chao Liu committed
255
    float avg_time = invoker.Run(argument, StreamConfig{nullptr, time_kernel});
Chao Liu's avatar
Chao Liu committed
256

Chao Liu's avatar
clean  
Chao Liu committed
257
258
    std::size_t flop      = conv_param.GetFlops();
    std::size_t num_btype = conv_param.GetByte<InDataType, WeiDataType, OutDataType>();
Chao Liu's avatar
Chao Liu committed
259

Chao Liu's avatar
Chao Liu committed
260
261
262
    float tflops     = static_cast<float>(flop) / 1.E9 / avg_time;
    float gb_per_sec = num_btype / 1.E6 / avg_time;
    std::cout << "Perf: " << avg_time << " ms, " << tflops << " TFlops, " << gb_per_sec << " GB/s, "
Chao Liu's avatar
Chao Liu committed
263
264
265
266
              << conv.GetTypeString() << std::endl;

    if(do_verification)
    {
Chao Liu's avatar
Chao Liu committed
267
268
269
270
271
272
273
274
275
276
        auto ref_conv = ck::tensor_operation::host::ReferenceConvFwd<NDimSpatial,
                                                                     InLayout,
                                                                     WeiLayout,
                                                                     OutLayout,
                                                                     InDataType,
                                                                     WeiDataType,
                                                                     OutDataType,
                                                                     InElementOp,
                                                                     WeiElementOp,
                                                                     OutElementOp>();
Chao Liu's avatar
Chao Liu committed
277
278

        auto ref_invoker  = ref_conv.MakeInvoker();
Chao Liu's avatar
Chao Liu committed
279
280
281
        auto ref_argument = ref_conv.MakeArgument(in,
                                                  wei,
                                                  out_host,
Chao Liu's avatar
clean  
Chao Liu committed
282
283
284
285
                                                  conv_param.conv_filter_strides_,
                                                  conv_param.conv_filter_dilations_,
                                                  conv_param.input_left_pads_,
                                                  conv_param.input_right_pads_,
Chao Liu's avatar
Chao Liu committed
286
287
288
                                                  in_element_op,
                                                  wei_element_op,
                                                  out_element_op);
Chao Liu's avatar
Chao Liu committed
289
290
291

        ref_invoker.Run(ref_argument);

Chao Liu's avatar
Chao Liu committed
292
        out_device_buf.FromDevice(out_device.mData.data());
Chao Liu's avatar
Chao Liu committed
293

Chao Liu's avatar
Chao Liu committed
294
295
        return ck::utils::check_err(
                   out_host.mData, out_device.mData, "Error: incorrect results!", 1e-5f, 1e-4f)
Chao Liu's avatar
Chao Liu committed
296
297
298
299
300
301
                   ? 0
                   : 1;
    }

    return 0;
}