profile_reduce_impl.hpp 29.2 KB
Newer Older
1
#pragma once
2
3

#include "check_err.hpp"
4
5
6
#include "device_reduce.hpp"
#include "device_reduce_instance.hpp"
#include "reduction_enums.hpp"
7
#include "host_reduction.hpp"
8
9
10
11
12
13

namespace ck {
namespace tensor_operation {
namespace device {
namespace device_reduce_instance {

Qianfeng's avatar
Qianfeng committed
14
template <int Rank, int NumReduceDim, int ReduceOpId, int NanOpt, int IndicesOpt>
15
16
struct ReduceDescription
{
Qianfeng's avatar
Qianfeng committed
17
18
19
20
21
    static constexpr int Rank_         = Rank;
    static constexpr int NumReduceDim_ = NumReduceDim;
    static constexpr int ReduceOpId_   = ReduceOpId;
    static constexpr int NanOpt_       = NanOpt;
    static constexpr int IndicesOpt_   = IndicesOpt;
22
23
};

Qianfeng's avatar
Qianfeng committed
24
using reduce_description_instances = std::tuple<ReduceDescription<4, 3, 0, 0, 0>, // for ADD
25
                                                ReduceDescription<4, 4, 0, 0, 0>,
Qianfeng's avatar
Qianfeng committed
26
27
28
29
                                                ReduceDescription<4, 1, 0, 0, 0>,
                                                ReduceDescription<2, 1, 0, 0, 0>,

                                                ReduceDescription<4, 3, 5, 0, 0>, // for AVG
30
                                                ReduceDescription<4, 4, 5, 0, 0>,
Qianfeng's avatar
Qianfeng committed
31
32
33
34
                                                ReduceDescription<4, 1, 5, 0, 0>,
                                                ReduceDescription<2, 1, 5, 0, 0>,

                                                ReduceDescription<4, 3, 7, 0, 0>, // for NORM2
35
                                                ReduceDescription<4, 4, 7, 0, 0>,
Qianfeng's avatar
Qianfeng committed
36
37
38
39
                                                ReduceDescription<4, 1, 7, 0, 0>,
                                                ReduceDescription<2, 1, 7, 0, 0>,

                                                ReduceDescription<4, 3, 2, 0, 0>, // for MIN
40
                                                ReduceDescription<4, 4, 2, 0, 0>,
Qianfeng's avatar
Qianfeng committed
41
42
43
                                                ReduceDescription<4, 1, 2, 0, 0>,
                                                ReduceDescription<2, 1, 2, 0, 0>,
                                                ReduceDescription<4, 3, 3, 0, 0>, // for MAX
44
                                                ReduceDescription<4, 4, 3, 0, 0>,
Qianfeng's avatar
Qianfeng committed
45
46
47
                                                ReduceDescription<4, 1, 3, 0, 0>,
                                                ReduceDescription<2, 1, 3, 0, 0>,
                                                ReduceDescription<4, 3, 4, 0, 0>, // for AMAX
48
                                                ReduceDescription<4, 4, 4, 0, 0>,
Qianfeng's avatar
Qianfeng committed
49
50
51
52
                                                ReduceDescription<4, 1, 4, 0, 0>,
                                                ReduceDescription<2, 1, 4, 0, 0>,

                                                ReduceDescription<4, 3, 2, 0, 1>, // for MIN
53
                                                ReduceDescription<4, 4, 2, 0, 1>,
Qianfeng's avatar
Qianfeng committed
54
55
56
                                                ReduceDescription<4, 1, 2, 0, 1>,
                                                ReduceDescription<2, 1, 2, 0, 1>,
                                                ReduceDescription<4, 3, 3, 0, 1>, // for MAX
57
                                                ReduceDescription<4, 4, 3, 0, 1>,
Qianfeng's avatar
Qianfeng committed
58
59
60
                                                ReduceDescription<4, 1, 3, 0, 1>,
                                                ReduceDescription<2, 1, 3, 0, 1>,
                                                ReduceDescription<4, 3, 4, 0, 1>, // for AMAX
61
                                                ReduceDescription<4, 4, 4, 0, 1>,
Qianfeng's avatar
Qianfeng committed
62
63
                                                ReduceDescription<4, 1, 4, 0, 1>,
                                                ReduceDescription<2, 1, 4, 0, 1>>;
64
65
66
67

template <typename DescriptionType>
bool description_match(const DescriptionType& description,
                       int Rank,
Qianfeng's avatar
Qianfeng committed
68
                       const std::vector<int>& reduceDims,
69
70
71
                       ReduceTensorOp ReduceOpId,
                       NanPropagation NanOpt,
                       ReduceTensorIndices IndicesOpt)
72
73
74
75
76
77
{
    if(description.Rank_ != Rank || description.ReduceOpId_ != static_cast<int>(ReduceOpId) ||
       description.NanOpt_ != static_cast<int>(NanOpt) ||
       description.IndicesOpt_ != static_cast<int>(IndicesOpt))
        return (false);

Qianfeng's avatar
Qianfeng committed
78
    if(DescriptionType::NumReduceDim_ != reduceDims.size())
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
        return (false);

    bool result = true;

    return (result);
};

} // namespace device_reduce_instance
} // namespace device
} // namespace tensor_operation
} // namespace ck

namespace ck {
namespace profiler {

Qianfeng's avatar
Qianfeng committed
94
95
template <index_t Rank, index_t NumReduceDim>
static inline std::vector<int> get_invariant_dims(const std::vector<int>& reduceDims)
96
{
Qianfeng's avatar
Qianfeng committed
97
    assert(NumReduceDim == reduceDims.size());
98

Qianfeng's avatar
Qianfeng committed
99
    int reduceFlag = 0;
100

Qianfeng's avatar
Qianfeng committed
101
102
    // flag the bits for the reduceDims
    for(int i = 0; i < NumReduceDim; i++)
103
    {
Qianfeng's avatar
Qianfeng committed
104
        reduceFlag |= 1 << reduceDims[i];
105
106
    };

Qianfeng's avatar
Qianfeng committed
107
108
109
110
111
112
113
114
115
116
    std::vector<int> invariantDims;

    // collect invariant dimensions
    for(int i = 0; i < Rank; i++)
        if((reduceFlag & (1 << i)) == 0)
        {
            invariantDims.push_back(i);
        };

    return invariantDims;
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
};

template <typename T>
static void dumpBufferToFile(const char* fileName, T* data, size_t dataNumItems)
{
    std::ofstream outFile(fileName, std::ios::binary);
    if(outFile)
    {
        outFile.write(reinterpret_cast<char*>(data), dataNumItems * sizeof(T));
        outFile.close();
        std::cout << "Write output to file " << fileName << std::endl;
    }
    else
    {
        std::cout << "Could not open file " << fileName << " for writing" << std::endl;
    }
};

// map the data type used by the GPU kernels to the corresponding type used by the host codes
136
template <typename InType>
137
138
struct type_mapping
{
139
    using OutType = InType;
140
141
142
143
144
};

template <>
struct type_mapping<ck::half_t>
{
145
    using OutType = half_float::half;
146
147
148
149
150
151
};

template <typename InDataType,
          typename AccDataType,
          typename OutDataType,
          int Rank,
Qianfeng's avatar
Qianfeng committed
152
          int NumReduceDim,
153
154
155
          ReduceTensorOp ReduceOpId,
          NanPropagation NanOpt,
          ReduceTensorIndices IndicesOpt>
156
157
158
159
160
161
void profile_reduce_impl_impl(bool do_verification,
                              int init_method,
                              bool do_log,
                              bool do_dumpout,
                              int nrepeat,
                              const std::vector<size_t>& inLengths,
Qianfeng's avatar
Qianfeng committed
162
                              const std::vector<int>& reduceDims,
163
164
165
166
167
168
169
170
                              float alpha,
                              float beta)
{
    using namespace ck::tensor_operation::device;
    using namespace ck::tensor_operation::device::device_reduce_instance;
    using namespace ck::host_reduce;

    constexpr bool op_support_indices =
171
172
        (ReduceOpId == ReduceTensorOp::MIN || ReduceOpId == ReduceTensorOp::MAX ||
         ReduceOpId == ReduceTensorOp::AMAX);
173
174

    constexpr bool NeedIndices =
175
        (op_support_indices && (IndicesOpt != ReduceTensorIndices::NO_INDICES));
176

177
    constexpr bool PropagateNan = (NanOpt == NanPropagation::PROPAGATE_NAN);
178
179
180

    constexpr bool out_support_atomic_add = std::is_same<OutDataType, float>::value;
    constexpr bool op_support_atomic_add =
181
        !op_support_indices && ReduceOpId != ReduceTensorOp::NORM2;
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
    constexpr bool use_atomic_add = (out_support_atomic_add && op_support_atomic_add);

    // 1) If InDataType is half_t, must use half_t as AccDataType for indexable reduction operations
    // 2) If InDataType is half_t, must use float as AccDataType for non-indexable reduction
    // operations
    constexpr bool invalid_reduce_1 =
        std::is_same<InDataType, half_t>::value &&
        ((!op_support_indices && !std::is_same<AccDataType, float>::value) ||
         (op_support_indices && !std::is_same<AccDataType, half_t>::value));

    // 1) If InDataType is float, must use float as AccDataType for indexable reduction operations
    constexpr bool invalid_reduce_2 =
        std::is_same<InDataType, float>::value &&
        (op_support_indices && !std::is_same<AccDataType, float>::value);

    // 1) The indices can only be used when the reduction operation is indexable
    constexpr bool invalid_reduce_3 =
199
        (!op_support_indices && IndicesOpt != ReduceTensorIndices::NO_INDICES);
200

201
202
203
204
205
206
207
208
209
210
211
    // 1) If InDataType is int8_t, must use int8_t as AccDataType for indexable reduction operations
    // 2) If InDataType is int8_t, must use int32_t as AccDataType for non-indexable reduction
    // operations
    constexpr bool invalid_reduce_4 =
        std::is_same<InDataType, int8_t>::value &&
        ((!op_support_indices && !std::is_same<AccDataType, int32_t>::value) ||
         (op_support_indices && !std::is_same<AccDataType, int8_t>::value));

    // 1) If InDataType is int8_t, the supported operation must be either indexable operations or
    // ADD/AVG
    constexpr bool invalid_reduce_5 = std::is_same<InDataType, int8_t>::value &&
212
213
                                      (!op_support_indices && ReduceOpId != ReduceTensorOp::ADD &&
                                       ReduceOpId != ReduceTensorOp::AVG);
214
215
216
217
218
219
220

    // 1) If InDataType is bhalf_t, must use float as AccDataType for all reduction operations
    constexpr bool invalid_reduce_6 =
        std::is_same<InDataType, bhalf_t>::value && !std::is_same<AccDataType, float>::value;

    constexpr bool invalid_reduce = (invalid_reduce_1 || invalid_reduce_2 || invalid_reduce_3 ||
                                     invalid_reduce_4 || invalid_reduce_5 || invalid_reduce_6);
221
222
223
224
225
226
227

    if constexpr(!invalid_reduce)
    {
        Tensor<InDataType> in(inLengths);

        std::vector<size_t> outLengths;

Qianfeng's avatar
Qianfeng committed
228
229
230
        const auto invariantDims = get_invariant_dims<Rank, NumReduceDim>(reduceDims);

        if(reduceDims.size() == Rank)
231
232
            outLengths.push_back(1);
        else
Qianfeng's avatar
Qianfeng committed
233
            for(auto dim : invariantDims)
234
235
236
237
                outLengths.push_back(inLengths[dim]);

        Tensor<OutDataType> out_ref(outLengths);
        Tensor<OutDataType> out(outLengths);
238
239
        Tensor<int32_t> out_indices_ref(outLengths);
        Tensor<int32_t> out_indices(outLengths);
240
241
242
243
244
245
246

        auto inStrides  = in.mDesc.GetStrides();
        auto outStrides = out.mDesc.GetStrides();

        size_t invariant_total_length = out.mDesc.GetElementSize();
        size_t reduce_total_length    = in.mDesc.GetElementSize() / invariant_total_length;

247
        std::size_t num_thread = 1;
248
249
250
251
252

        if(do_verification)
        {
            switch(init_method)
            {
253
254
255
            case 0: break;
            case 1:
                in.GenerateTensorValue(GeneratorTensor_1<InDataType>{1}, num_thread);
256
                if(beta != 0.0f)
257
                    out_ref.GenerateTensorValue(GeneratorTensor_1<InDataType>{1}, num_thread);
258
                break;
259
            case 2:
260
261
262
263
264
                in.GenerateTensorValue(GeneratorTensor_2<InDataType>{-5, 5}, num_thread);
                if(beta != 0.0f)
                    out_ref.GenerateTensorValue(GeneratorTensor_2<InDataType>{-5, 5}, num_thread);
                break;
            default:
265
                in.GenerateTensorValue(GeneratorTensor_3<InDataType>{-5.0, 5.0}, num_thread);
266
                if(beta != 0.0f)
267
268
                    out_ref.GenerateTensorValue(GeneratorTensor_3<InDataType>{-5.0, 5.0},
                                                num_thread);
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
            }

            if(beta != 0.0f)
                for(size_t i = 0; i < out_ref.mDesc.GetElementSpace(); i++)
                    out.mData[i] = out_ref.mData[i];
        };

        // these buffers are usually provided by the user application
        DeviceMem in_dev(sizeof(InDataType) * in.mDesc.GetElementSpace());
        DeviceMem out_dev(sizeof(OutDataType) * out.mDesc.GetElementSpace());

        in_dev.ToDevice(in.mData.data());

        if(beta != 0.0f)
            out_dev.ToDevice(out.mData.data());

        size_t indicesSizeInBytes = NeedIndices ? out.mDesc.GetElementSize() * sizeof(int) : 0;

        DeviceMem out_indices_dev(indicesSizeInBytes);

        float best_avg_time   = 0;
        float best_gb_per_sec = 0;

        using InElementwiseOperation_0 =
            typename reduce_unary_operator<AccDataType, ReduceOpId, true, true>::
                InElementwiseOperation;
        using AccElementwiseOperation_0 =
            typename reduce_unary_operator<AccDataType, ReduceOpId, true, true>::
                AccElementwiseOperation;
        using InElementwiseOperation_1 =
            typename reduce_unary_operator<AccDataType, ReduceOpId, true, false>::
                InElementwiseOperation;
        using AccElementwiseOperation_1 =
            typename reduce_unary_operator<AccDataType, ReduceOpId, true, false>::
                AccElementwiseOperation;
        using InElementwiseOperation_2 =
            typename reduce_unary_operator<AccDataType, ReduceOpId, false, true>::
                InElementwiseOperation;
        using AccElementwiseOperation_2 =
            typename reduce_unary_operator<AccDataType, ReduceOpId, false, true>::
                AccElementwiseOperation;

        using DeviceReduceInstPtr0 =
            DeviceReducePtr<InElementwiseOperation_0, AccElementwiseOperation_0>;
        using DeviceReduceInstPtr1 =
            DeviceReducePtr<InElementwiseOperation_1, AccElementwiseOperation_1>;
        using DeviceReduceInstPtr2 =
            DeviceReducePtr<InElementwiseOperation_2, AccElementwiseOperation_2>;

        std::vector<DeviceReduceInstPtr0> reduce0_ptrs;
        std::vector<DeviceReduceInstPtr1> reduce1_ptrs;
        std::vector<DeviceReduceInstPtr2> reduce2_ptrs;

        add_device_reduce_instance_threadwise<InDataType,
                                              AccDataType,
                                              OutDataType,
                                              Rank,
Qianfeng's avatar
Qianfeng committed
326
                                              NumReduceDim,
327
328
329
330
331
332
333
334
                                              ReduceOpId,
                                              NanOpt,
                                              IndicesOpt>(reduce0_ptrs);

        add_device_reduce_instance_blockwise<InDataType,
                                             AccDataType,
                                             OutDataType,
                                             Rank,
Qianfeng's avatar
Qianfeng committed
335
                                             NumReduceDim,
336
337
338
339
340
                                             ReduceOpId,
                                             NanOpt,
                                             IndicesOpt>(reduce0_ptrs);

        if constexpr(use_atomic_add)
341
        {
342
343
344
345
            add_device_reduce_instance_multiblock_atomic_add<InDataType,
                                                             AccDataType,
                                                             OutDataType,
                                                             Rank,
Qianfeng's avatar
Qianfeng committed
346
                                                             NumReduceDim,
347
348
349
                                                             ReduceOpId,
                                                             NanOpt,
                                                             IndicesOpt>(reduce0_ptrs);
350
        }
351
        else
352
        {
353
354
355
356
            add_device_reduce_instance_multiblock_partial_reduce<InDataType,
                                                                 AccDataType,
                                                                 OutDataType,
                                                                 Rank,
Qianfeng's avatar
Qianfeng committed
357
                                                                 NumReduceDim,
358
359
360
                                                                 ReduceOpId,
                                                                 NanOpt,
                                                                 IndicesOpt>(reduce1_ptrs);
361
        };
362
363
364

        // used for secondary reduction
        if constexpr(!use_atomic_add)
365
        {
366
367
368
369
            add_device_reduce_instance_blockwise_second_call<AccDataType,
                                                             AccDataType,
                                                             OutDataType,
                                                             Rank,
Qianfeng's avatar
Qianfeng committed
370
                                                             NumReduceDim,
371
372
373
                                                             ReduceOpId,
                                                             NanOpt,
                                                             IndicesOpt>(reduce2_ptrs);
374
        };
375
376
377
378
379
380
381
382

        if(reduce0_ptrs.empty() && reduce1_ptrs.empty())
        {
            throw std::runtime_error("Wrong! No device REDUCE instance found");
        };

        if(do_verification)
        {
383
384
385
            ReductionHost<InDataType,
                          AccDataType,
                          OutDataType,
386
387
388
389
390
                          ReduceOpId,
                          Rank,
                          NumReduceDim,
                          PropagateNan,
                          NeedIndices>
Qianfeng's avatar
Qianfeng committed
391
                hostReduce(in.mDesc, out_ref.mDesc, invariantDims, reduceDims);
392

393
394
            hostReduce.Run(
                alpha, in.mData.data(), beta, out_ref.mData.data(), out_indices_ref.mData.data());
395
396
397
398
399
400
401
402
403
        };

        const auto i_inLengths  = to_int_vector(inLengths);
        const auto i_inStrides  = to_int_vector(inStrides);
        const auto i_outLengths = to_int_vector(outLengths);
        const auto i_outStrides = to_int_vector(outStrides);

        for(auto& reduce_ptr : reduce0_ptrs)
        {
404
            auto wsSizeInBytes = reduce_ptr->GetWorkspaceSizeInBytes(i_inLengths, reduceDims);
405
406
407

            DeviceMem ws_dev(wsSizeInBytes);

408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
            InElementwiseOperation_0 in_elementwise_op_0(static_cast<int32_t>(reduce_total_length));
            AccElementwiseOperation_0 acc_elementwise_op_0(
                static_cast<int32_t>(reduce_total_length));

            auto argument_ptr = reduce_ptr->MakeArgumentPointer(i_inLengths,
                                                                i_inStrides,
                                                                i_outLengths,
                                                                i_outStrides,
                                                                reduceDims,
                                                                alpha,
                                                                beta,
                                                                in_dev.GetDeviceBuffer(),
                                                                out_dev.GetDeviceBuffer(),
                                                                out_indices_dev.GetDeviceBuffer(),
                                                                ws_dev.GetDeviceBuffer(),
                                                                in_elementwise_op_0,
                                                                acc_elementwise_op_0);
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452

            if(!reduce_ptr->IsSupportedArgument(argument_ptr.get()))
                continue;

            std::string reduce_name = reduce_ptr->GetTypeString();

            auto invoker_ptr = reduce_ptr->MakeInvokerPointer();

            float avg_time = invoker_ptr->Run(argument_ptr.get(), nrepeat);

            std::size_t num_bytes =
                invariant_total_length * reduce_total_length * sizeof(InDataType) +
                invariant_total_length * sizeof(OutDataType);

            float gb_per_sec = num_bytes / 1.E6 / avg_time;

            std::cout << "Perf: " << avg_time << " ms, " << gb_per_sec << " GB/s, " << reduce_name
                      << std::endl;

            if(gb_per_sec > best_gb_per_sec)
            {
                best_avg_time   = avg_time;
                best_gb_per_sec = gb_per_sec;
            }

            if(do_verification)
            {
                out_dev.FromDevice(out.mData.data());
453
                ck::utils::check_err(out.mData, out_ref.mData);
454
455
456
457

                if(NeedIndices)
                {
                    out_indices_dev.FromDevice(out_indices.mData.data());
458
459
                    ck::utils::check_err(out_indices.mData, out_indices_ref.mData);
                    ;
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
                };

                if(do_log)
                {
                    LogRangeAsType<float>(std::cout << "out_host  : ", out_ref.mData, ",")
                        << std::endl;
                    LogRangeAsType<float>(std::cout << "out_device: ", out.mData, ",") << std::endl;
                };
            };

            if(do_dumpout)
            {
                dumpBufferToFile("dump_in.bin", in.mData.data(), in.mDesc.GetElementSize());
                dumpBufferToFile("dump_out.bin", out.mData.data(), out.mDesc.GetElementSize());
                dumpBufferToFile(
                    "dump_out_host.bin", out_ref.mData.data(), out_ref.mDesc.GetElementSize());
                if(NeedIndices)
                {
                    dumpBufferToFile("dump_indices.bin",
                                     out_indices.mData.data(),
                                     out_indices.mDesc.GetElementSize());
                    dumpBufferToFile("dump_indices_host.bin",
                                     out_indices_ref.mData.data(),
                                     out_indices_ref.mDesc.GetElementSize());
                };
            };
        };

        for(auto& reduce_ptr : reduce1_ptrs)
        {
490
            auto wsSizeInBytes = reduce_ptr->GetWorkspaceSizeInBytes(i_inLengths, reduceDims);
491
492
493

            DeviceMem ws_dev(wsSizeInBytes);

494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
            InElementwiseOperation_1 in_elementwise_op_1(static_cast<int32_t>(reduce_total_length));
            AccElementwiseOperation_1 acc_elementwise_op_1(
                static_cast<int32_t>(reduce_total_length));

            auto argument_ptr = reduce_ptr->MakeArgumentPointer(i_inLengths,
                                                                i_inStrides,
                                                                i_outLengths,
                                                                i_outStrides,
                                                                reduceDims,
                                                                alpha,
                                                                beta,
                                                                in_dev.GetDeviceBuffer(),
                                                                out_dev.GetDeviceBuffer(),
                                                                out_indices_dev.GetDeviceBuffer(),
                                                                ws_dev.GetDeviceBuffer(),
                                                                in_elementwise_op_1,
                                                                acc_elementwise_op_1);
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529

            if(!reduce_ptr->IsSupportedArgument(argument_ptr.get()))
                continue;

            std::string reduce_name = reduce_ptr->GetTypeString();

            auto invoker_ptr = reduce_ptr->MakeInvokerPointer();

            float avg_time = invoker_ptr->Run(argument_ptr.get(), nrepeat);

            std::size_t num_bytes =
                invariant_total_length * reduce_total_length * sizeof(InDataType) +
                invariant_total_length * sizeof(OutDataType);

            std::vector<int> inLengths2 = reduce_ptr->GetWorkspace2dLengths(argument_ptr.get());
            std::vector<int> inStrides2{inLengths2[1], 1};

            for(auto& reduce2_ptr : reduce2_ptrs)
            {
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
                InElementwiseOperation_2 in_elementwise_op_2(
                    static_cast<int32_t>(reduce_total_length));
                AccElementwiseOperation_2 acc_elementwise_op_2(
                    static_cast<int32_t>(reduce_total_length));

                auto argument2_ptr =
                    reduce2_ptr->MakeArgumentPointer(inLengths2,
                                                     inStrides2,
                                                     i_outLengths,
                                                     i_outStrides,
                                                     reduceDims,
                                                     alpha,
                                                     beta,
                                                     ws_dev.GetDeviceBuffer(),
                                                     out_dev.GetDeviceBuffer(),
                                                     out_indices_dev.GetDeviceBuffer(),
                                                     ws_dev.GetDeviceBuffer(),
                                                     in_elementwise_op_2,
                                                     acc_elementwise_op_2);
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575

                if(!reduce2_ptr->IsSupportedArgument(argument2_ptr.get()))
                    continue;

                std::string reduce2_name = reduce2_ptr->GetTypeString();

                auto invoker2_ptr = reduce2_ptr->MakeInvokerPointer();

                float avg_time_2 = invoker2_ptr->Run(argument2_ptr.get(), nrepeat);

                std::size_t num_bytes_2 =
                    static_cast<size_t>(inLengths2[0]) * inLengths2[1] * sizeof(AccDataType);

                float gb_per_sec = (num_bytes + num_bytes_2) / 1.E6 / (avg_time + avg_time_2);

                std::cout << "Perf: " << (avg_time + avg_time_2) << " ms, " << gb_per_sec
                          << " GB/s, " << reduce_name << " => " << reduce2_name << std::endl;

                if(gb_per_sec > best_gb_per_sec)
                {
                    best_avg_time   = avg_time + avg_time_2;
                    best_gb_per_sec = gb_per_sec;
                }

                if(do_verification)
                {
                    out_dev.FromDevice(out.mData.data());
576
                    ck::utils::check_err(out.mData, out_ref.mData);
577
578
579
580

                    if(NeedIndices)
                    {
                        out_indices_dev.FromDevice(out_indices.mData.data());
581
582
                        ck::utils::check_err(out_indices.mData, out_indices_ref.mData);
                        ;
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
                    };

                    if(do_log)
                    {
                        LogRangeAsType<float>(std::cout << "out_host  : ", out_ref.mData, ",")
                            << std::endl;
                        LogRangeAsType<float>(std::cout << "out_device: ", out.mData, ",")
                            << std::endl;
                    }
                }

                if(do_dumpout)
                {
                    dumpBufferToFile("dump_in.bin", in.mData.data(), in.mDesc.GetElementSize());
                    dumpBufferToFile("dump_out.bin", out.mData.data(), out.mDesc.GetElementSize());
                    dumpBufferToFile(
                        "dump_out_host.bin", out_ref.mData.data(), out_ref.mDesc.GetElementSize());
                    if(NeedIndices)
                    {
                        dumpBufferToFile("dump_indices.bin",
                                         out_indices.mData.data(),
                                         out_indices.mDesc.GetElementSize());
                        dumpBufferToFile("dump_indices_host.bin",
                                         out_indices_ref.mData.data(),
                                         out_indices_ref.mDesc.GetElementSize());
                    };
                };
            };
        };

        std::cout << "Best Perf: " << best_avg_time << " ms, " << best_gb_per_sec << " GB/s"
                  << std::endl;
    }
    else
    {
        std::cout << "The requested reduction operation is not supported, please check !!!"
                  << std::endl;
    };
};

template <typename InDataType, typename AccDataType, typename OutDataType>
void profile_reduce_impl(bool do_verification,
                         int init_method,
                         bool do_log,
                         bool do_dumpout,
                         int nrepeat,
                         const std::vector<size_t>& inLengths,
Qianfeng's avatar
Qianfeng committed
630
                         const std::vector<int>& reduceDims,
631
632
633
                         ReduceTensorOp ReduceOpId,
                         NanPropagation NanOpt,
                         ReduceTensorIndices IndicesOpt,
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
                         float alpha,
                         float beta)
{
    bool matched = false;

    using tuple_of_description_instances =
        tensor_operation::device::device_reduce_instance::reduce_description_instances;

    const auto tuple_object = tuple_of_description_instances{};

    static_for<0, std::tuple_size<tuple_of_description_instances>::value, 1>{}([&](auto i) {
        if(matched)
            return;

        using descType = remove_cvref_t<decltype(std::get<i>(tuple_object))>;

        if(!description_match(
Qianfeng's avatar
Qianfeng committed
651
               descType{}, inLengths.size(), reduceDims, ReduceOpId, NanOpt, IndicesOpt))
652
653
654
655
656
657
            return;

        profile_reduce_impl_impl<InDataType,
                                 AccDataType,
                                 OutDataType,
                                 descType::Rank_,
Qianfeng's avatar
Qianfeng committed
658
                                 descType::NumReduceDim_,
659
660
661
                                 static_cast<ReduceTensorOp>(descType::ReduceOpId_),
                                 static_cast<NanPropagation>(descType::NanOpt_),
                                 static_cast<ReduceTensorIndices>(descType::IndicesOpt_)>(
Qianfeng's avatar
Qianfeng committed
662
663
664
665
666
667
668
669
670
            do_verification,
            init_method,
            do_log,
            do_dumpout,
            nrepeat,
            inLengths,
            reduceDims,
            alpha,
            beta);
671
672
673
674
675
676
677

        matched = true;
    });
};

} // namespace profiler
} // namespace ck