"src/targets/vscode:/vscode.git/clone" did not exist on "86094d23c4b7744eb07b2ea69b4b273acd75d528"
magic_division.hpp 8.49 KB
Newer Older
Chao Liu's avatar
Chao Liu committed
1
// SPDX-License-Identifier: MIT
Illia Silin's avatar
Illia Silin committed
2
// Copyright (c) 2018-2023, Advanced Micro Devices, Inc. All rights reserved.
Chao Liu's avatar
Chao Liu committed
3

Chao Liu's avatar
Chao Liu committed
4
#pragma once
5

Chao Liu's avatar
Chao Liu committed
6
#include "ck/ck.hpp"
7
8
9
10
11
#include "ck/utility/integral_constant.hpp"
#include "ck/utility/number.hpp"
#include "ck/utility/type.hpp"
#include "ck/utility/tuple.hpp"
#include "ck/utility/bit_cast.hpp"
12
13
14
15
16
17
18
19
20
21
22
23
24
25

namespace ck {

// magic number division
// Caution:
//   1. For uint32_t as dividend: magic number division implementation being used would produce
//   correct result if the dividend is uint32_t and its value is within 31-bit value range.
//   2. For int32_t as dividendd: magic number division for int32_t dividened has not been
//   implemented, the int32_t dividend would be bit-wise interpreted as uint32_t and magic number
//   division implementation for uint32_t is then used. Therefore, dividend value need to be
//   non-negative.
// TODO:
//   1. Implement magic number divison for int32_t
//   2. Implement magic number divison for unit32_t with 32-bit value range
Chao Liu's avatar
Chao Liu committed
26
struct MagicDivision32BitRange
27
28
29
30
{
    // uint32_t
    __host__ __device__ static constexpr auto CalculateMagicNumbers(uint32_t divisor)
    {
Chao Liu's avatar
Chao Liu committed
31
32
        // WARNING: magic division is only valid for division inside this range.
        // assert(divisor >= 1 && divisor <= INT32_MAX)
33

Chao Liu's avatar
Chao Liu committed
34
        uint32_t shift_u32 = 0;
35

Chao Liu's avatar
Chao Liu committed
36
37
38
39
        while((1U << shift_u32) < divisor)
        {
            shift_u32++;
        };
40

Chao Liu's avatar
Chao Liu committed
41
42
        uint64_t tmp_u64        = ((1UL << shift_u32) - divisor) << 32;
        uint32_t multiplier_u32 = tmp_u64 / divisor + 1;
43

Chao Liu's avatar
Chao Liu committed
44
        return make_tuple(multiplier_u32, shift_u32);
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
    }

    // integral_constant<uint32_t, .>
    template <uint32_t Divisor>
    __host__ __device__ static constexpr auto
        CalculateMagicNumbers(integral_constant<uint32_t, Divisor>)
    {
        constexpr auto tmp = CalculateMagicNumbers(uint32_t{Divisor});

        constexpr uint32_t multiplier = tmp[Number<0>{}];
        constexpr uint32_t shift      = tmp[Number<1>{}];

        return make_tuple(integral_constant<uint32_t, multiplier>{},
                          integral_constant<uint32_t, shift>{});
    }

Chao Liu's avatar
Chao Liu committed
61
62
    // integral_constant<int32_t, .>
    template <int32_t Divisor>
63
    __host__ __device__ static constexpr auto
Chao Liu's avatar
Chao Liu committed
64
        CalculateMagicNumbers(integral_constant<int32_t, Divisor>)
65
    {
Chao Liu's avatar
Chao Liu committed
66
67
        return CalculateMagicNumbers(integral_constant<uint32_t, Divisor>{});
    }
68

Chao Liu's avatar
Chao Liu committed
69
70
71
72
73
74
    // magic division for uint32_t
    __device__ static constexpr uint32_t
    DoMagicDivision(uint32_t dividend, uint32_t multiplier, uint32_t shift)
    {
        uint32_t tmp = __umulhi(dividend, multiplier);
        return (tmp + dividend) >> shift;
75
76
    }

Chao Liu's avatar
Chao Liu committed
77
78
    __host__ static constexpr uint32_t
    DoMagicDivision(uint32_t dividend, uint32_t multiplier, uint32_t shift)
79
    {
Chao Liu's avatar
Chao Liu committed
80
81
82
        uint32_t tmp = (static_cast<uint64_t>(dividend) * multiplier) >> 32;
        return (tmp + dividend) >> shift;
    }
83

Chao Liu's avatar
Chao Liu committed
84
85
86
87
88
89
90
91
92
93
    // magic division for int32_t
    // HACK: use dividend_i32 as if it's uint32_t, dividend_i32 need to be
    // non-negative for result to be correct
    // TODO: figure out how to do magic number divison for int32_t as dividended
    __device__ static constexpr int32_t
    DoMagicDivision(int32_t dividend_i32, uint32_t multiplier, uint32_t shift)
    {
        uint32_t dividend_u32 = bit_cast<uint32_t>(dividend_i32);
        uint32_t tmp          = __umulhi(dividend_u32, multiplier);
        return (tmp + dividend_u32) >> shift;
94
95
    }

Chao Liu's avatar
Chao Liu committed
96
97
    __host__ static constexpr int32_t
    DoMagicDivision(int32_t dividend_i32, uint32_t multiplier, uint32_t shift)
98
    {
Chao Liu's avatar
Chao Liu committed
99
100
101
        uint32_t dividend_u32 = bit_cast<uint32_t>(dividend_i32);
        uint32_t tmp          = (static_cast<uint64_t>(dividend_u32) * multiplier) >> 32;
        return (tmp + dividend_u32) >> shift;
102
    }
Chao Liu's avatar
Chao Liu committed
103
};
104

Chao Liu's avatar
Chao Liu committed
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
// magic number division
// This version on works for divisor and dividended between [0, 1 << 16]
struct MagicDivision16BitRange
{
    // uint32_t
    __host__ __device__ static constexpr auto CalculateMagicNumbers(uint32_t divisor)
    {
        // WARNING: magic division is only valid for division inside this range.
        // assert(divisor >= 1 && divisor <= (1U << 16));

        uint32_t shift_u32 = 0;

        while((1U << shift_u32) < divisor)
        {
            shift_u32++;
        };

        uint32_t one            = 1;
        uint32_t multiplier_u32 = ((one << 16) * ((one << shift_u32) - divisor)) / divisor + 1;

        return make_tuple(multiplier_u32, shift_u32);
    }

    // integral_constant<uint32_t, .>
    template <uint32_t Divisor>
130
    __host__ __device__ static constexpr auto
Chao Liu's avatar
Chao Liu committed
131
        CalculateMagicNumbers(integral_constant<uint32_t, Divisor>)
132
    {
Chao Liu's avatar
Chao Liu committed
133
134
135
136
137
138
139
        constexpr auto tmp = CalculateMagicNumbers(uint32_t{Divisor});

        constexpr uint32_t multiplier = tmp[Number<0>{}];
        constexpr uint32_t shift      = tmp[Number<1>{}];

        return make_tuple(integral_constant<uint32_t, multiplier>{},
                          integral_constant<uint32_t, shift>{});
140
141
    }

Chao Liu's avatar
Chao Liu committed
142
    // integral_constant<int32_t, .>
143
144
    template <int32_t Divisor>
    __host__ __device__ static constexpr auto
Chao Liu's avatar
Chao Liu committed
145
        CalculateMagicNumbers(integral_constant<int32_t, Divisor>)
146
    {
Chao Liu's avatar
Chao Liu committed
147
        return CalculateMagicNumbers(integral_constant<uint32_t, Divisor>{});
148
149
150
    }

    // magic division for uint32_t
Jianfeng Yan's avatar
Jianfeng Yan committed
151
    __device__ static constexpr uint32_t
152
153
    DoMagicDivision(uint32_t dividend, uint32_t multiplier, uint32_t shift)
    {
Chao Liu's avatar
Chao Liu committed
154
        uint32_t tmp = (dividend * multiplier) >> 16;
155
156
157
        return (tmp + dividend) >> shift;
    }

Jianfeng Yan's avatar
Jianfeng Yan committed
158
159
160
    __host__ static constexpr uint32_t
    DoMagicDivision(uint32_t dividend, uint32_t multiplier, uint32_t shift)
    {
Chao Liu's avatar
Chao Liu committed
161
        uint32_t tmp = (dividend * multiplier) >> 16;
Jianfeng Yan's avatar
Jianfeng Yan committed
162
163
164
        return (tmp + dividend) >> shift;
    }

Chao Liu's avatar
Chao Liu committed
165
    // magic division for int32_t
166
167
168
    // HACK: use dividend_i32 as if it's uint32_t, dividend_i32 need to be
    // non-negative for result to be correct
    // TODO: figure out how to do magic number divison for int32_t as dividended
Jianfeng Yan's avatar
Jianfeng Yan committed
169
    __device__ static constexpr int32_t
170
171
    DoMagicDivision(int32_t dividend_i32, uint32_t multiplier, uint32_t shift)
    {
172
        uint32_t dividend_u32 = bit_cast<uint32_t>(dividend_i32);
Chao Liu's avatar
Chao Liu committed
173
        uint32_t tmp          = (dividend_u32 * multiplier) >> 16;
174
        return (tmp + dividend_u32) >> shift;
175
    }
Jianfeng Yan's avatar
Jianfeng Yan committed
176
177
178
179
180

    __host__ static constexpr int32_t
    DoMagicDivision(int32_t dividend_i32, uint32_t multiplier, uint32_t shift)
    {
        uint32_t dividend_u32 = bit_cast<uint32_t>(dividend_i32);
Chao Liu's avatar
Chao Liu committed
181
        uint32_t tmp          = (dividend_u32 * multiplier) >> 16;
Jianfeng Yan's avatar
Jianfeng Yan committed
182
183
        return (tmp + dividend_u32) >> shift;
    }
184
185
};

Chao Liu's avatar
Chao Liu committed
186
187
188
// use 32bit version
using MagicDivision = MagicDivision32BitRange;

189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
struct MDiv
{
    // 1 dword -> 3 dword storage
    uint32_t divisor;
    uint32_t multiplier;
    uint32_t shift; // TODO: 8 bit is enough

    // prefer construct on host
    __host__ __device__ MDiv(uint32_t divisor_) : divisor(divisor_)
    {
        auto tmp = MagicDivision::CalculateMagicNumbers(divisor_);

        multiplier = tmp[Number<0>{}];
        shift      = tmp[Number<1>{}];
    }

    __host__ __device__ MDiv() : divisor(0), multiplier(0), shift(0) {}

    __host__ __device__ void update(uint32_t divisor_)
    {
        divisor  = divisor_;
        auto tmp = MagicDivision::CalculateMagicNumbers(divisor_);

        multiplier = tmp[Number<0>{}];
        shift      = tmp[Number<1>{}];
    }

    __host__ __device__ uint32_t div(uint32_t dividend_) const
    {
        return MagicDivision::DoMagicDivision(dividend_, multiplier, shift);
    }

    __host__ __device__ void
    divmod(uint32_t dividend_, uint32_t& quotient_, uint32_t& remainder_) const
    {
        quotient_  = div(dividend_);
        remainder_ = dividend_ - (quotient_ * divisor);
    }

    __host__ __device__ uint32_t get() const { return divisor; }
};

struct MDiv2
{
    // 1 dword -> 2 dword storage, divisor need compute from runtime
    uint32_t multiplier;
    uint32_t shift; // TODO: 8 bit is enough

    // prefer construct on host
    __host__ __device__ MDiv2(uint32_t divisor_)
    {
        auto tmp = MagicDivision::CalculateMagicNumbers(divisor_);

        multiplier = tmp[Number<0>{}];
        shift      = tmp[Number<1>{}];
    }

    __host__ __device__ MDiv2() : multiplier(0), shift(0) {}

    __host__ __device__ uint32_t div(uint32_t dividend_) const
    {
        return MagicDivision::DoMagicDivision(dividend_, multiplier, shift);
    }

    __host__ __device__ void
    divmod(uint32_t dividend_, uint32_t divisor_, uint32_t& quotient_, uint32_t& remainder_) const
    {
        quotient_  = div(dividend_);
        remainder_ = dividend_ - (quotient_ * divisor_);
    }
};

261
} // namespace ck