magic_division.hpp 7.4 KB
Newer Older
Chao Liu's avatar
Chao Liu committed
1
// SPDX-License-Identifier: MIT
Illia Silin's avatar
Illia Silin committed
2
// Copyright (c) 2018-2023, Advanced Micro Devices, Inc. All rights reserved.
Chao Liu's avatar
Chao Liu committed
3

Chao Liu's avatar
Chao Liu committed
4
#pragma once
5

Chao Liu's avatar
Chao Liu committed
6
#include "ck/ck.hpp"
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
#include "integral_constant.hpp"
#include "number.hpp"
#include "type.hpp"
#include "tuple.hpp"

namespace ck {

// magic number division
// Caution:
//   1. For uint32_t as dividend: magic number division implementation being used would produce
//   correct result if the dividend is uint32_t and its value is within 31-bit value range.
//   2. For int32_t as dividendd: magic number division for int32_t dividened has not been
//   implemented, the int32_t dividend would be bit-wise interpreted as uint32_t and magic number
//   division implementation for uint32_t is then used. Therefore, dividend value need to be
//   non-negative.
// TODO:
//   1. Implement magic number divison for int32_t
//   2. Implement magic number divison for unit32_t with 32-bit value range
struct MagicDivision
{
    // uint32_t
    __host__ __device__ static constexpr auto CalculateMagicNumbers(uint32_t divisor)
    {
30
31
32
33
        // WARNING: magic division is only applicable for division inside this range.
        // You should use the return value of CalculateMagicNumbers, if division is not inside this
        // range. The "else" logic below is to quiet down run-time error.
        if(divisor >= 1 && divisor <= INT32_MAX)
34
        {
35
36
            uint32_t shift = 0;
            for(shift = 0; shift < 32; ++shift)
37
            {
38
39
40
41
                if((1U << shift) >= divisor)
                {
                    break;
                }
42
43
            }

44
45
46
            uint64_t one        = 1;
            uint64_t multiplier = ((one << 32) * ((one << shift) - divisor)) / divisor + 1;
            // assert(multiplier <= 0xffffffffUL);
47

48
49
50
51
52
53
            return make_tuple(uint32_t(multiplier), shift);
        }
        else
        {
            return make_tuple(uint32_t(0), uint32_t(0));
        }
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
    }

    __host__ __device__ static constexpr uint32_t CalculateMagicMultiplier(uint32_t divisor)
    {
        auto tmp = CalculateMagicNumbers(divisor);

        return tmp[Number<0>{}];
    }

    __host__ __device__ static constexpr uint32_t CalculateMagicShift(uint32_t divisor)
    {
        auto tmp = CalculateMagicNumbers(divisor);

        return tmp[Number<1>{}];
    }

    // integral_constant<uint32_t, .>
    template <uint32_t Divisor>
    __host__ __device__ static constexpr auto
        CalculateMagicNumbers(integral_constant<uint32_t, Divisor>)
    {
        constexpr auto tmp = CalculateMagicNumbers(uint32_t{Divisor});

        constexpr uint32_t multiplier = tmp[Number<0>{}];
        constexpr uint32_t shift      = tmp[Number<1>{}];

        return make_tuple(integral_constant<uint32_t, multiplier>{},
                          integral_constant<uint32_t, shift>{});
    }

    template <uint32_t Divisor>
    __host__ __device__ static constexpr auto
        CalculateMagicMultiplier(integral_constant<uint32_t, Divisor>)
    {
        constexpr uint32_t multiplier = CalculateMagicMultiplier(uint32_t{Divisor});

        return integral_constant<uint32_t, multiplier>{};
    }

    template <uint32_t Divisor>
    __host__ __device__ static constexpr auto
        CalculateMagicShift(integral_constant<uint32_t, Divisor>)
    {
        constexpr uint32_t shift = CalculateMagicShift(uint32_t{Divisor});

        return integral_constant<uint32_t, shift>{};
    }

    // integral_constant<int32_t, .>
    template <int32_t Divisor>
    __host__ __device__ static constexpr auto
        CalculateMagicNumbers(integral_constant<int32_t, Divisor>)
    {
        return CalculateMagicNumbers(integral_constant<uint32_t, Divisor>{});
    }

    template <int32_t Divisor>
    __host__ __device__ static constexpr auto
        CalculateMagicMultiplier(integral_constant<int32_t, Divisor>)
    {
        return CalculateMagicMultiplier(integral_constant<uint32_t, Divisor>{});
    }

    template <int32_t Divisor>
    __host__ __device__ static constexpr auto
        CalculateMagicShift(integral_constant<int32_t, Divisor>)
    {
        return CalculateMagicShift(integral_constant<uint32_t, Divisor>{});
    }

    // magic division for uint32_t
Jianfeng Yan's avatar
Jianfeng Yan committed
125
    __device__ static constexpr uint32_t
126
127
    DoMagicDivision(uint32_t dividend, uint32_t multiplier, uint32_t shift)
    {
Chao Liu's avatar
Chao Liu committed
128
        uint32_t tmp = __umulhi(dividend, multiplier);
129
130
131
        return (tmp + dividend) >> shift;
    }

Jianfeng Yan's avatar
Jianfeng Yan committed
132
133
134
135
136
137
138
    __host__ static constexpr uint32_t
    DoMagicDivision(uint32_t dividend, uint32_t multiplier, uint32_t shift)
    {
        uint32_t tmp = static_cast<uint64_t>(dividend) * multiplier >> 32;
        return (tmp + dividend) >> shift;
    }

Chao Liu's avatar
Chao Liu committed
139
    // magic division for int32_t
140
141
142
    // HACK: use dividend_i32 as if it's uint32_t, dividend_i32 need to be
    // non-negative for result to be correct
    // TODO: figure out how to do magic number divison for int32_t as dividended
Jianfeng Yan's avatar
Jianfeng Yan committed
143
    __device__ static constexpr int32_t
144
145
    DoMagicDivision(int32_t dividend_i32, uint32_t multiplier, uint32_t shift)
    {
146
        uint32_t dividend_u32 = bit_cast<uint32_t>(dividend_i32);
Chao Liu's avatar
Chao Liu committed
147
        uint32_t tmp          = __umulhi(dividend_u32, multiplier);
148
        return (tmp + dividend_u32) >> shift;
149
    }
Jianfeng Yan's avatar
Jianfeng Yan committed
150
151
152
153
154
155
156
157

    __host__ static constexpr int32_t
    DoMagicDivision(int32_t dividend_i32, uint32_t multiplier, uint32_t shift)
    {
        uint32_t dividend_u32 = bit_cast<uint32_t>(dividend_i32);
        uint32_t tmp          = static_cast<uint64_t>(dividend_u32) * multiplier >> 32;
        return (tmp + dividend_u32) >> shift;
    }
158
159
};

160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
struct MDiv
{
    // 1 dword -> 3 dword storage
    uint32_t divisor;
    uint32_t multiplier;
    uint32_t shift; // TODO: 8 bit is enough

    // prefer construct on host
    __host__ __device__ MDiv(uint32_t divisor_) : divisor(divisor_)
    {
        auto tmp = MagicDivision::CalculateMagicNumbers(divisor_);

        multiplier = tmp[Number<0>{}];
        shift      = tmp[Number<1>{}];
    }

    __host__ __device__ MDiv() : divisor(0), multiplier(0), shift(0) {}

    __host__ __device__ void update(uint32_t divisor_)
    {
        divisor  = divisor_;
        auto tmp = MagicDivision::CalculateMagicNumbers(divisor_);

        multiplier = tmp[Number<0>{}];
        shift      = tmp[Number<1>{}];
    }

    __host__ __device__ uint32_t div(uint32_t dividend_) const
    {
        return MagicDivision::DoMagicDivision(dividend_, multiplier, shift);
    }

    __host__ __device__ void
    divmod(uint32_t dividend_, uint32_t& quotient_, uint32_t& remainder_) const
    {
        quotient_  = div(dividend_);
        remainder_ = dividend_ - (quotient_ * divisor);
    }

    __host__ __device__ uint32_t get() const { return divisor; }
};

struct MDiv2
{
    // 1 dword -> 2 dword storage, divisor need compute from runtime
    uint32_t multiplier;
    uint32_t shift; // TODO: 8 bit is enough

    // prefer construct on host
    __host__ __device__ MDiv2(uint32_t divisor_)
    {
        auto tmp = MagicDivision::CalculateMagicNumbers(divisor_);

        multiplier = tmp[Number<0>{}];
        shift      = tmp[Number<1>{}];
    }

    __host__ __device__ MDiv2() : multiplier(0), shift(0) {}

    __host__ __device__ uint32_t div(uint32_t dividend_) const
    {
        return MagicDivision::DoMagicDivision(dividend_, multiplier, shift);
    }

    __host__ __device__ void
    divmod(uint32_t dividend_, uint32_t divisor_, uint32_t& quotient_, uint32_t& remainder_) const
    {
        quotient_  = div(dividend_);
        remainder_ = dividend_ - (quotient_ * divisor_);
    }
};

232
} // namespace ck