Commit 230156c4 authored by yangzhong's avatar yangzhong
Browse files

bert-large training

parents
Pipeline #3006 failed with stages
in 0 seconds
bert.png

112 KB

{
"attention_probs_dropout_prob": 0.1,
"hidden_act": "gelu",
"hidden_dropout_prob": 0.1,
"hidden_size": 1024,
"initializer_range": 0.02,
"intermediate_size": 4096,
"max_position_embeddings": 512,
"num_attention_heads": 16,
"num_hidden_layers": 24,
"type_vocab_size": 2,
"vocab_size": 30522
}
#!/bin/bash
export HIP_VISIBLE_DEVICES=0
mpirun --allow-run-as-root -np 1 single_pre1_1.sh
This diff is collapsed.
export HIP_LAUNCH_BLOCKING=1
mpirun --allow-run-as-root -np 4 single_pre1_4.sh
export HIP_LAUNCH_BLOCKING=1
mpirun --allow-run-as-root -np 4 single_pre1_4_fp16.sh
#!/bin/bash
mpirun --allow-run-as-root -np 1 single_pre1_1_fp16.sh
#!/bin/bash
mpirun --allow-run-as-root -np 1 single_pre2_1.sh
#!/bin/bash
export HIP_LAUNCH_BLOCKING=1
mpirun --allow-run-as-root -np 4 single_pre2_4.sh
#!/bin/bash
export HIP_LAUNCH_BLOCKING=1
mpirun --allow-run-as-root -np 4 single_pre2_4_fp16.sh
#!/bin/bash
mpirun --allow-run-as-root -np 1 single_pre2_1_fp16.sh
#!/bin/bash
mpirun --allow-run-as-root -np 1 single_squad.sh
#!/bin/bash
#export LD_LIBRARY_PATH=/public/home/hepj/job_env/apps/dtk-21.10.1/lib
mpirun --allow-run-as-root -np 4 single_squad4.sh
#!/bin/bash
#export LD_LIBRARY_PATH=/public/home/hepj/job_env/apps/dtk-21.10.1/lib
mpirun --allow-run-as-root -np 4 single_squad4_fp16.sh
#!/bin/bash
mpirun --allow-run-as-root -np 1 single_squad_fp16.sh
# Copyright (c) 2020 NVIDIA CORPORATION. All rights reserved.
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
#! /bin/bash
set -euo pipefail
print_usage() {
cat << EOF
${0} [options] [--] COMMAND [ARG...]
Control binding policy for each task. Assumes one rank will be launched for each GPU.
Options:
--cpu=MODE
* exclusive -- bind each rank to an exclusive set of cores near its GPU
* exclusive,nosmt -- bind each rank to an exclusive set of cores near its GPU, without hyperthreading
* node -- bind each rank to all cores in the NUMA node nearest its GPU [default]
* *.sh -- bind each rank using the bash associative array bind_cpu_cores or bind_cpu_nodes from a file
* off -- don't bind
--mem=MODE
* node -- bind each rank to the nearest NUMA node [default]
* *.sh -- bind each rank using the bash associative array bind_mem from a file
* off -- don't bind
--ib=MODE
* single -- bind each rank to a single IB device near its GPU
* off -- donot bind [default]
--cluster=CLUSTER
Select which cluster is being used. May be required if system params cannot be detected.
EOF
}
################################################################################
# Argument parsing
################################################################################
cpu_mode='node'
mem_mode='node'
ib_mode='off'
cluster=''
while [ $# -gt 0 ]; do
case "$1" in
-h|--help) print_usage ; exit 0 ;;
--cpu=*) cpu_mode="${1/*=/}"; shift ;;
--cpu) cpu_mode="$2"; shift 2 ;;
--mem=*) mem_mode="${1/*=/}"; shift ;;
--mem) mem_mode="$2"; shift 2 ;;
--ib=*) ib_mode="${1/*=/}"; shift ;;
--ib) ib_mode="$2"; shift 2 ;;
--cluster=*) cluster="${1/*=/}"; shift ;;
--cluster) cluster="$2"; shift 2 ;;
--) shift; break ;;
*) break ;;
esac
done
if [ $# -lt 1 ]; then
echo 'ERROR: no command given' 2>&1
print_usage
exit 1
fi
################################################################################
# Get system params
################################################################################
# LOCAL_RANK is set with an enroot hook for Pytorch containers
# SLURM_LOCALID is set by Slurm
# OMPI_COMM_WORLD_LOCAL_RANK is set by mpirun
readonly local_rank="${LOCAL_RANK:=${SLURM_LOCALID:=${OMPI_COMM_WORLD_LOCAL_RANK:-}}}"
if [ -z "${local_rank}" ]; then
echo 'ERROR: cannot read LOCAL_RANK from env' >&2
exit 1
fi
num_gpus=$(nvidia-smi -i 0 --query-gpu=count --format=csv,noheader,nounits)
if [ "${local_rank}" -ge "${num_gpus}" ]; then
echo "ERROR: local rank is ${local_rank}, but there are only ${num_gpus} gpus available" >&2
exit 1
fi
get_lscpu_value() {
awk -F: "(\$1 == \"${1}\"){gsub(/ /, \"\", \$2); print \$2; found=1} END{exit found!=1}"
}
lscpu_out=$(lscpu)
num_sockets=$(get_lscpu_value 'Socket(s)' <<< "${lscpu_out}")
num_nodes=$(get_lscpu_value 'NUMA node(s)' <<< "${lscpu_out}")
cores_per_socket=$(get_lscpu_value 'Core(s) per socket' <<< "${lscpu_out}")
echo "num_sockets = ${num_sockets} num_nodes=${num_nodes} cores_per_socket=${cores_per_socket}"
readonly cores_per_node=$(( (num_sockets * cores_per_socket) / num_nodes ))
if [ ${num_gpus} -gt 1 ]; then
readonly gpus_per_node=$(( num_gpus / num_nodes ))
else
readonly gpus_per_node=1
fi
readonly cores_per_gpu=$(( cores_per_node / gpus_per_node ))
readonly local_node=$(( local_rank / gpus_per_node ))
declare -a ibdevs=()
case "${cluster}" in
circe)
# Need to specialize for circe because IB detection is hard
ibdevs=(mlx5_1 mlx5_2 mlx5_3 mlx5_4 mlx5_7 mlx5_8 mlx5_9 mlx5_10)
;;
selene)
# Need to specialize for selene because IB detection is hard
ibdevs=(mlx5_0 mlx5_1 mlx5_2 mlx5_3 mlx5_6 mlx5_7 mlx5_8 mlx5_9)
;;
'')
if ibstat_out="$(ibstat -l 2>/dev/null | sort -V)" ; then
mapfile -t ibdevs <<< "${ibstat_out}"
fi
;;
*)
echo "ERROR: Unknown cluster '${cluster}'" >&2
exit 1
;;
esac
readonly num_ibdevs="${#ibdevs[@]}"
################################################################################
# Setup for exec
################################################################################
declare -a numactl_args=()
case "${cpu_mode}" in
exclusive)
numactl_args+=( "$(printf -- "--physcpubind=%u-%u,%u-%u" \
$(( local_rank * cores_per_gpu )) \
$(( (local_rank + 1) * cores_per_gpu - 1 )) \
$(( local_rank * cores_per_gpu + (cores_per_gpu * gpus_per_node * num_nodes) )) \
$(( (local_rank + 1) * cores_per_gpu + (cores_per_gpu * gpus_per_node * num_nodes) - 1 )) \
)" )
;;
exclusive,nosmt)
numactl_args+=( "$(printf -- "--physcpubind=%u-%u" \
$(( local_rank * cores_per_gpu )) \
$(( (local_rank + 1) * cores_per_gpu - 1 )) \
)" )
;;
node)
numactl_args+=( "--cpunodebind=${local_node}" )
;;
*.sh)
source "${cpu_mode}"
if [ -n "${bind_cpu_cores:-}" ]; then
numactl_args+=( "--physcpubind=${bind_cpu_cores[${local_rank}]}" )
elif [ -n "${bind_cpu_nodes:-}" ]; then
numactl_args+=( "--cpunodebind=${bind_cpu_nodes[${local_rank}]}" )
else
echo "ERROR: invalid CPU affinity file ${cpu_mode}." >&2
exit 1
fi
;;
off|'')
;;
*)
echo "ERROR: invalid cpu mode '${cpu_mode}'" 2>&1
print_usage
exit 1
;;
esac
case "${mem_mode}" in
node)
numactl_args+=( "--membind=${local_node}" )
;;
*.sh)
source "${mem_mode}"
if [ -z "${bind_mem:-}" ]; then
echo "ERROR: invalid memory affinity file ${mem_mode}." >&2
exit 1
fi
numactl_args+=( "--membind=${bind_mem[${local_rank}]}" )
;;
off|'')
;;
*)
echo "ERROR: invalid mem mode '${mem_mode}'" 2>&1
print_usage
exit 1
;;
esac
case "${ib_mode}" in
single)
if [ "${num_ibdevs}" -eq 0 ]; then
echo "WARNING: used '$0 --ib=single', but there are 0 IB devices available; skipping IB binding." 2>&1
else
readonly ibdev="${ibdevs[$(( local_rank * num_ibdevs / num_gpus ))]}"
export OMPI_MCA_btl_openib_if_include="${OMPI_MCA_btl_openib_if_include-$ibdev}"
fi
;;
off|'')
;;
*)
echo "ERROR: invalid ib mode '${ib_mode}'" 2>&1
print_usage
exit 1
;;
esac
################################################################################
# Exec
################################################################################
if [ "${#numactl_args[@]}" -gt 0 ] ; then
set -x
exec numactl "${numactl_args[@]}" -- "${@}"
else
exec "${@}"
fi
# Copyright (c) 2019 NVIDIA CORPORATION. All rights reserved.
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
import sys
import subprocess
import os
import socket
from argparse import ArgumentParser, REMAINDER
import torch
def parse_args():
"""
Helper function parsing the command line options
@retval ArgumentParser
"""
parser = ArgumentParser(description="PyTorch distributed training launch "
"helper utilty that will spawn up "
"multiple distributed processes")
# Optional arguments for the launch helper
parser.add_argument("--nnodes", type=int, default=1,
help="The number of nodes to use for distributed "
"training")
parser.add_argument("--node_rank", type=int, default=0,
help="The rank of the node for multi-node distributed "
"training")
parser.add_argument("--nproc_per_node", type=int, default=1,
help="The number of processes to launch on each node, "
"for GPU training, this is recommended to be set "
"to the number of GPUs in your system so that "
"each process can be bound to a single GPU.")
parser.add_argument("--master_addr", default="127.0.0.1", type=str,
help="Master node (rank 0)'s address, should be either "
"the IP address or the hostname of node 0, for "
"single node multi-proc training, the "
"--master_addr can simply be 127.0.0.1")
parser.add_argument("--master_port", default=29500, type=int,
help="Master node (rank 0)'s free port that needs to "
"be used for communciation during distributed "
"training")
parser.add_argument('--no_hyperthreads', action='store_true',
help='Flag to disable binding to hyperthreads')
parser.add_argument('--no_membind', action='store_true',
help='Flag to disable memory binding')
# non-optional arguments for binding
parser.add_argument("--nsockets_per_node", type=int, required=True,
help="Number of CPU sockets on a node")
parser.add_argument("--ncores_per_socket", type=int, required=True,
help="Number of CPU cores per socket")
# positional
parser.add_argument("training_script", type=str,
help="The full path to the single GPU training "
"program/script to be launched in parallel, "
"followed by all the arguments for the "
"training script")
# rest from the training program
parser.add_argument('training_script_args', nargs=REMAINDER)
return parser.parse_args()
def main():
args = parse_args()
# variables for numactrl binding
NSOCKETS = args.nsockets_per_node
NGPUS_PER_SOCKET = (args.nproc_per_node // args.nsockets_per_node) + (1 if (args.nproc_per_node % args.nsockets_per_node) else 0)
NCORES_PER_GPU = args.ncores_per_socket // NGPUS_PER_SOCKET
# world size in terms of number of processes
dist_world_size = args.nproc_per_node * args.nnodes
# set PyTorch distributed related environmental variables
current_env = os.environ.copy()
current_env["MASTER_ADDR"] = args.master_addr
current_env["MASTER_PORT"] = str(args.master_port)
current_env["WORLD_SIZE"] = str(dist_world_size)
processes = []
for local_rank in range(0, args.nproc_per_node):
# each process's rank
dist_rank = args.nproc_per_node * args.node_rank + local_rank
current_env["RANK"] = str(dist_rank)
# form numactrl binding command
cpu_ranges = [local_rank * NCORES_PER_GPU,
(local_rank + 1) * NCORES_PER_GPU - 1,
local_rank * NCORES_PER_GPU + (NCORES_PER_GPU * NGPUS_PER_SOCKET * NSOCKETS),
(local_rank + 1) * NCORES_PER_GPU + (NCORES_PER_GPU * NGPUS_PER_SOCKET * NSOCKETS) - 1]
numactlargs = []
if args.no_hyperthreads:
numactlargs += [ "--physcpubind={}-{}".format(*cpu_ranges[0:2]) ]
else:
numactlargs += [ "--physcpubind={}-{},{}-{}".format(*cpu_ranges) ]
if not args.no_membind:
memnode = local_rank // NGPUS_PER_SOCKET
numactlargs += [ "--membind={}".format(memnode) ]
# spawn the processes
cmd = [ "/usr/bin/numactl" ] \
+ numactlargs \
+ [ sys.executable,
"-u",
args.training_script,
"--local_rank={}".format(local_rank)
] \
+ args.training_script_args
process = subprocess.Popen(cmd, env=current_env)
processes.append(process)
for process in processes:
process.wait()
if __name__ == "__main__":
main()
Markdown is supported
0% or .
You are about to add 0 people to the discussion. Proceed with caution.
Finish editing this message first!
Please register or to comment