train.md 2.67 KB
Newer Older
unknown's avatar
unknown committed
1
2
3
4
# MMpose算例测试

## 测试前准备
### 数据集准备
unknown's avatar
unknown committed
5
使用COCO2017数据集.
unknown's avatar
unknown committed
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
### 环境部署
```python
yum install python3
yum install libquadmath
yum install numactl
yum install openmpi3
yum install glog
yum install lmdb-libs
yum install opencv-core
yum install opencv
yum install openblas-serial
pip3 install --upgrade pip
pip3 install opencv-python
```
### 安装python依赖包
```python
unknown's avatar
unknown committed
22
23
24
pip3 install torch-1.10.0a0+git2040069.dtk2210-cp37-cp37m-manylinux2014_x86_64.whl -i https://pypi.tuna.tsinghua.edu.cn/simple
pip3 install torchvision-0.10.0a0+e04d001.dtk2210-cp37-cp37m-manylinux2014_x86_64.whl -i https://pypi.tuna.tsinghua.edu.cn/simple
pip3 install mmcv_full-1.6.1+gitdebbc80.dtk2210-cp37-cp37m-manylinux2014_x86_64.whl -i https://pypi.tuna.tsinghua.edu.cn/simple
unknown's avatar
unknown committed
25
26
27
28
poseval安装
cd poseval
pip install -e .  
mmpose安装
unknown's avatar
unknown committed
29
cd mmpose-0.28.1 
unknown's avatar
unknown committed
30
31
pip3 install -e .
```
unknown's avatar
unknown committed
32
注:测试不同版本的dtk,需安装对应版本的库whl包.
unknown's avatar
unknown committed
33
34
35
## ResNet50-Bottom-Up测试
### 单卡测试(单精度)
```python
unknown's avatar
unknown committed
36
./sing_test.sh configs/body/2d_kpt_sview_rgb_img/topdown_heatmap/coco/res50_coco_256x192.py
unknown's avatar
unknown committed
37
38
```
#### 参数说明
unknown's avatar
unknown committed
39
configs/body/2d_kpt_sview_rgb_img/res50_coco_256x192_dummy.py 中batch_size=samples_per_gpu*卡数,性能计算方法:batch_size/time
unknown's avatar
unknown committed
40
#### 性能关注:time
unknown's avatar
unknown committed
41
42
43
44
45

#### 单机多卡训练

1.pytorch单机多卡训练

unknown's avatar
unknown committed
46
```python
unknown's avatar
unknown committed
47
./tools/dist_train.sh configs/body/2d_kpt_sview_rgb_img/topdown_heatmap/coco/res50_coco_256x192.py $GPUS
unknown's avatar
unknown committed
48
```
unknown's avatar
unknown committed
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71

#### 多机多卡训练

1.pytorch多机多卡训练

在第一台机器上:

NODES=$NNODES NODE_RANK=$NODE_RANK PORT=$PORT MASTER_ADDR=$MASTER_ADDR sh tools/dist_train.sh configs/body/2d_kpt_sview_rgb_img/res50_coco_256x192_dummy.py $GPUS

在第二台机器上:

NODES=$NNODES NODE_RANK=$NODE_RANK PORT=$PORT MASTER_ADDR=$MASTER_ADDR sh tools/dist_train.sh configs/body/2d_kpt_sview_rgb_img/res50_coco_256x192_dummy.py $GPUS

### 半精度测试

修改configs文件,添加fp16 = dict(loss_scale=512.),单机多卡和多机多卡测试与单精度测试方法相同。

### 其他模型测试

其他模型的测试步骤和ResNet50-Bottom-Up相同,只需修改对应的config文件即可,下面列出相关模型对应的config文件列表:

| 模型               | configs                                                      |
| ------------------ | ------------------------------------------------------------ |
unknown's avatar
unknown committed
72
| ResNet50-Top-Down  | configs/body/2d_kpt_sview_rgb_img/topdown_heatmap/coco/res50_coco_256x192.py |
unknown's avatar
unknown committed
73
74
| HrNet-Top-Down     | configs/body/2d_kpt_sview_rgb_img/topdown_heatmap/coco/hrnet_w32_coco_256x192.py |
| ResNet50-Bottom-Up | configs/body/2d_kpt_sview_rgb_img/associative_embedding/coco/hrnet_w32_coco_512x512.py |