# MMpose算例测试 ## 测试前准备 ### 数据集准备 使用COCO2017数据集. ### 环境部署 ```python yum install python3 yum install libquadmath yum install numactl yum install openmpi3 yum install glog yum install lmdb-libs yum install opencv-core yum install opencv yum install openblas-serial pip3 install --upgrade pip pip3 install opencv-python ``` ### 安装python依赖包 ```python pip3 install torch-1.10.0a0+git2040069.dtk2210-cp37-cp37m-manylinux2014_x86_64.whl -i https://pypi.tuna.tsinghua.edu.cn/simple pip3 install torchvision-0.10.0a0+e04d001.dtk2210-cp37-cp37m-manylinux2014_x86_64.whl -i https://pypi.tuna.tsinghua.edu.cn/simple pip3 install mmcv_full-1.6.1+gitdebbc80.dtk2210-cp37-cp37m-manylinux2014_x86_64.whl -i https://pypi.tuna.tsinghua.edu.cn/simple poseval安装: cd poseval pip install -e .   mmpose安装: cd mmpose-0.28.1 pip3 install -e . ``` 注:测试不同版本的dtk,需安装对应版本的库whl包. ## ResNet50-Bottom-Up测试 ### 单卡测试(单精度) ```python ./sing_test.sh configs/body/2d_kpt_sview_rgb_img/topdown_heatmap/coco/res50_coco_256x192.py ``` #### 参数说明 configs/body/2d_kpt_sview_rgb_img/res50_coco_256x192_dummy.py 中batch_size=samples_per_gpu*卡数,性能计算方法:batch_size/time #### 性能关注:time #### 单机多卡训练 1.pytorch单机多卡训练 ```python ./tools/dist_train.sh configs/body/2d_kpt_sview_rgb_img/topdown_heatmap/coco/res50_coco_256x192.py $GPUS ``` #### 多机多卡训练 1.pytorch多机多卡训练 在第一台机器上: NODES=$NNODES NODE_RANK=$NODE_RANK PORT=$PORT MASTER_ADDR=$MASTER_ADDR sh tools/dist_train.sh configs/body/2d_kpt_sview_rgb_img/res50_coco_256x192_dummy.py $GPUS 在第二台机器上: NODES=$NNODES NODE_RANK=$NODE_RANK PORT=$PORT MASTER_ADDR=$MASTER_ADDR sh tools/dist_train.sh configs/body/2d_kpt_sview_rgb_img/res50_coco_256x192_dummy.py $GPUS ### 半精度测试 修改configs文件,添加fp16 = dict(loss_scale=512.),单机多卡和多机多卡测试与单精度测试方法相同。 ### 其他模型测试 其他模型的测试步骤和ResNet50-Bottom-Up相同,只需修改对应的config文件即可,下面列出相关模型对应的config文件列表: | 模型 | configs | | ------------------ | ------------------------------------------------------------ | | ResNet50-Top-Down | configs/body/2d_kpt_sview_rgb_img/topdown_heatmap/coco/res50_coco_256x192.py | | HrNet-Top-Down | configs/body/2d_kpt_sview_rgb_img/topdown_heatmap/coco/hrnet_w32_coco_256x192.py | | ResNet50-Bottom-Up | configs/body/2d_kpt_sview_rgb_img/associative_embedding/coco/hrnet_w32_coco_512x512.py |