metafile.yml 6.6 KB
Newer Older
unknown's avatar
unknown committed
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
Collections:
  - Name: ResNet
    Metadata:
      Training Data: ImageNet
      Training Techniques:
        - SGD with Momentum
        - Weight Decay
      Training Resources: 8x V100 GPUs
      Epochs: 100
      Batch Size: 256
      Architecture:
        - ResNet
    Paper: https://openaccess.thecvf.com/content_cvpr_2016/html/He_Deep_Residual_Learning_CVPR_2016_paper.html
    README: configs/resnet/README.md

Models:
- Config: configs/resnet/resnet18_b16x8_cifar10.py
  In Collection: ResNet
  Metadata:
    FLOPs: 560000000
    Parameters: 11170000
    Training Data: CIFAR-10
    Training Resources: 8x 1080 GPUs
    Epochs: 200
    Batch Size: 128
  Name: resnet18_b16x8_cifar10
  Results:
  - Dataset: CIFAR-10
    Metrics:
      Top 1 Accuracy: 94.72
    Task: Image Classification
  Weights: https://download.openmmlab.com/mmclassification/v0/resnet/resnet18_b16x8_cifar10_20200823-f906fa4e.pth
- Config: configs/resnet/resnet34_b16x8_cifar10.py
  In Collection: ResNet
  Metadata:
    FLOPs: 1160000000
    Parameters: 21280000
    Training Data: CIFAR-10
    Training Resources: 8x 1080 GPUs
    Epochs: 200
    Batch Size: 128
  Name: resnet34_b16x8_cifar10
  Results:
  - Dataset: CIFAR-10
    Metrics:
      Top 1 Accuracy: 95.34
    Task: Image Classification
  Weights: https://download.openmmlab.com/mmclassification/v0/resnet/resnet34_b16x8_cifar10_20200823-52d5d832.pth
- Config: configs/resnet/resnet50_b16x8_cifar10.py
  In Collection: ResNet
  Metadata:
    FLOPs: 1310000000
    Parameters: 23520000
    Training Data: CIFAR-10
    Training Resources: 8x 1080 GPUs
    Epochs: 200
    Batch Size: 128
  Name: resnet50_b16x8_cifar10
  Results:
  - Dataset: CIFAR-10
    Metrics:
      Top 1 Accuracy: 95.36
    Task: Image Classification
  Weights: https://download.openmmlab.com/mmclassification/v0/resnet/resnet50_b16x8_cifar10_20200823-882aa7b1.pth
- Config: configs/resnet/resnet101_b16x8_cifar10.py
  In Collection: ResNet
  Metadata:
    FLOPs: 2520000000
    Parameters: 42510000
    Training Data: CIFAR-10
    Training Resources: 8x 1080 GPUs
    Epochs: 200
    Batch Size: 128
  Name: resnet101_b16x8_cifar10
  Results:
  - Dataset: CIFAR-10
    Metrics:
      Top 1 Accuracy: 95.66
    Task: Image Classification
  Weights: https://download.openmmlab.com/mmclassification/v0/resnet/resnet101_b16x8_cifar10_20200823-d9501bbc.pth
- Config: configs/resnet/resnet152_b16x8_cifar10.py
  In Collection: ResNet
  Metadata:
    FLOPs: 3740000000
    Parameters: 58160000
    Training Data: CIFAR-10
    Training Resources: 8x 1080 GPUs
    Epochs: 200
    Batch Size: 128
  Name: resnet152_b16x8_cifar10
  Results:
  - Dataset: CIFAR-10
    Metrics:
      Top 1 Accuracy: 95.96
    Task: Image Classification
  Weights: https://download.openmmlab.com/mmclassification/v0/resnet/resnet152_b16x8_cifar10_20200823-ad4d5d0c.pth
- Config: configs/resnet/resnet50_b16x8_cifar100.py
  In Collection: ResNet
  Metadata:
    FLOPs: 1310000000
    Parameters: 23710000
    Training Data: CIFAR-100
    Training Resources: 8x 1080 GPUs
    Epochs: 200
    Batch Size: 128
  Name: resnet50_b16x8_cifar100
  Results:
  - Dataset: CIFAR-100
    Metrics:
      Top 1 Accuracy: 80.51
      Top 5 Accuracy: 95.27
    Task: Image Classification
  Weights: https://download.openmmlab.com/mmclassification/v0/resnet/resnet50_batch256_cifar100_20210410-37f13c16.pth
- Config: configs/resnet/resnet18_b32x8_imagenet.py
  In Collection: ResNet
  Metadata:
    FLOPs: 1820000000
    Parameters: 11690000
  Name: resnet18_b32x8_imagenet
  Results:
  - Dataset: ImageNet
    Metrics:
      Top 1 Accuracy: 70.07
      Top 5 Accuracy: 89.44
    Task: Image Classification
  Weights: https://download.openmmlab.com/mmclassification/v0/resnet/resnet18_batch256_imagenet_20200708-34ab8f90.pth
- Config: configs/resnet/resnet34_b32x8_imagenet.py
  In Collection: ResNet
  Metadata:
    FLOPs: 3680000000
    Parameters: 2180000
  Name: resnet34_b32x8_imagenet
  Results:
  - Dataset: ImageNet
    Metrics:
      Top 1 Accuracy: 73.85
      Top 5 Accuracy: 91.53
    Task: Image Classification
  Weights: https://download.openmmlab.com/mmclassification/v0/resnet/resnet34_batch256_imagenet_20200708-32ffb4f7.pth
- Config: configs/resnet/resnet50_b32x8_imagenet.py
  In Collection: ResNet
  Metadata:
    FLOPs: 4120000000
    Parameters: 25560000
  Name: resnet50_b32x8_imagenet
  Results:
  - Dataset: ImageNet
    Metrics:
      Top 1 Accuracy: 76.55
      Top 5 Accuracy: 93.15
    Task: Image Classification
  Weights: https://download.openmmlab.com/mmclassification/v0/resnet/resnet50_batch256_imagenet_20200708-cfb998bf.pth
- Config: configs/resnet/resnet101_b32x8_imagenet.py
  In Collection: ResNet
  Metadata:
    FLOPs: 7850000000
    Parameters: 44550000
  Name: resnet101_b32x8_imagenet
  Results:
  - Dataset: ImageNet
    Metrics:
      Top 1 Accuracy: 78.18
      Top 5 Accuracy: 94.03
    Task: Image Classification
  Weights: https://download.openmmlab.com/mmclassification/v0/resnet/resnet101_batch256_imagenet_20200708-753f3608.pth
- Config: configs/resnet/resnet152_b32x8_imagenet.py
  In Collection: ResNet
  Metadata:
    FLOPs: 11580000000
    Parameters: 60190000
  Name: resnet152_b32x8_imagenet
  Results:
  - Dataset: ImageNet
    Metrics:
      Top 1 Accuracy: 78.63
      Top 5 Accuracy: 94.16
    Task: Image Classification
  Weights: https://download.openmmlab.com/mmclassification/v0/resnet/resnet152_batch256_imagenet_20200708-ec25b1f9.pth
- Config: configs/resnet/resnetv1d50_b32x8_imagenet.py
  In Collection: ResNet
  Metadata:
    FLOPs: 4360000000
    Parameters: 25580000
  Name: resnetv1d50_b32x8_imagenet
  Results:
  - Dataset: ImageNet
    Metrics:
      Top 1 Accuracy: 77.4
      Top 5 Accuracy: 93.66
    Task: Image Classification
  Weights: https://download.openmmlab.com/mmclassification/v0/resnet/resnetv1d50_batch256_imagenet_20200708-1ad0ce94.pth
- Config: configs/resnet/resnetv1d101_b32x8_imagenet.py
  In Collection: ResNet
  Metadata:
    FLOPs: 8090000000
    Parameters: 44570000
  Name: resnetv1d101_b32x8_imagenet
  Results:
  - Dataset: ImageNet
    Metrics:
      Top 1 Accuracy: 78.85
      Top 5 Accuracy: 94.38
    Task: Image Classification
  Weights: https://download.openmmlab.com/mmclassification/v0/resnet/resnetv1d101_batch256_imagenet_20200708-9cb302ef.pth
- Config: configs/resnet/resnetv1d152_b32x8_imagenet.py
  In Collection: ResNet
  Metadata:
    FLOPs: 11820000000
    Parameters: 60210000
  Name: resnetv1d152_b32x8_imagenet
  Results:
  - Dataset: ImageNet
    Metrics:
      Top 1 Accuracy: 79.35
      Top 5 Accuracy: 94.61
    Task: Image Classification
  Weights: https://download.openmmlab.com/mmclassification/v0/resnet/resnetv1d152_batch256_imagenet_20200708-e79cb6a2.pth