Collections: - Name: ResNet Metadata: Training Data: ImageNet Training Techniques: - SGD with Momentum - Weight Decay Training Resources: 8x V100 GPUs Epochs: 100 Batch Size: 256 Architecture: - ResNet Paper: https://openaccess.thecvf.com/content_cvpr_2016/html/He_Deep_Residual_Learning_CVPR_2016_paper.html README: configs/resnet/README.md Models: - Config: configs/resnet/resnet18_b16x8_cifar10.py In Collection: ResNet Metadata: FLOPs: 560000000 Parameters: 11170000 Training Data: CIFAR-10 Training Resources: 8x 1080 GPUs Epochs: 200 Batch Size: 128 Name: resnet18_b16x8_cifar10 Results: - Dataset: CIFAR-10 Metrics: Top 1 Accuracy: 94.72 Task: Image Classification Weights: https://download.openmmlab.com/mmclassification/v0/resnet/resnet18_b16x8_cifar10_20200823-f906fa4e.pth - Config: configs/resnet/resnet34_b16x8_cifar10.py In Collection: ResNet Metadata: FLOPs: 1160000000 Parameters: 21280000 Training Data: CIFAR-10 Training Resources: 8x 1080 GPUs Epochs: 200 Batch Size: 128 Name: resnet34_b16x8_cifar10 Results: - Dataset: CIFAR-10 Metrics: Top 1 Accuracy: 95.34 Task: Image Classification Weights: https://download.openmmlab.com/mmclassification/v0/resnet/resnet34_b16x8_cifar10_20200823-52d5d832.pth - Config: configs/resnet/resnet50_b16x8_cifar10.py In Collection: ResNet Metadata: FLOPs: 1310000000 Parameters: 23520000 Training Data: CIFAR-10 Training Resources: 8x 1080 GPUs Epochs: 200 Batch Size: 128 Name: resnet50_b16x8_cifar10 Results: - Dataset: CIFAR-10 Metrics: Top 1 Accuracy: 95.36 Task: Image Classification Weights: https://download.openmmlab.com/mmclassification/v0/resnet/resnet50_b16x8_cifar10_20200823-882aa7b1.pth - Config: configs/resnet/resnet101_b16x8_cifar10.py In Collection: ResNet Metadata: FLOPs: 2520000000 Parameters: 42510000 Training Data: CIFAR-10 Training Resources: 8x 1080 GPUs Epochs: 200 Batch Size: 128 Name: resnet101_b16x8_cifar10 Results: - Dataset: CIFAR-10 Metrics: Top 1 Accuracy: 95.66 Task: Image Classification Weights: https://download.openmmlab.com/mmclassification/v0/resnet/resnet101_b16x8_cifar10_20200823-d9501bbc.pth - Config: configs/resnet/resnet152_b16x8_cifar10.py In Collection: ResNet Metadata: FLOPs: 3740000000 Parameters: 58160000 Training Data: CIFAR-10 Training Resources: 8x 1080 GPUs Epochs: 200 Batch Size: 128 Name: resnet152_b16x8_cifar10 Results: - Dataset: CIFAR-10 Metrics: Top 1 Accuracy: 95.96 Task: Image Classification Weights: https://download.openmmlab.com/mmclassification/v0/resnet/resnet152_b16x8_cifar10_20200823-ad4d5d0c.pth - Config: configs/resnet/resnet50_b16x8_cifar100.py In Collection: ResNet Metadata: FLOPs: 1310000000 Parameters: 23710000 Training Data: CIFAR-100 Training Resources: 8x 1080 GPUs Epochs: 200 Batch Size: 128 Name: resnet50_b16x8_cifar100 Results: - Dataset: CIFAR-100 Metrics: Top 1 Accuracy: 80.51 Top 5 Accuracy: 95.27 Task: Image Classification Weights: https://download.openmmlab.com/mmclassification/v0/resnet/resnet50_batch256_cifar100_20210410-37f13c16.pth - Config: configs/resnet/resnet18_b32x8_imagenet.py In Collection: ResNet Metadata: FLOPs: 1820000000 Parameters: 11690000 Name: resnet18_b32x8_imagenet Results: - Dataset: ImageNet Metrics: Top 1 Accuracy: 70.07 Top 5 Accuracy: 89.44 Task: Image Classification Weights: https://download.openmmlab.com/mmclassification/v0/resnet/resnet18_batch256_imagenet_20200708-34ab8f90.pth - Config: configs/resnet/resnet34_b32x8_imagenet.py In Collection: ResNet Metadata: FLOPs: 3680000000 Parameters: 2180000 Name: resnet34_b32x8_imagenet Results: - Dataset: ImageNet Metrics: Top 1 Accuracy: 73.85 Top 5 Accuracy: 91.53 Task: Image Classification Weights: https://download.openmmlab.com/mmclassification/v0/resnet/resnet34_batch256_imagenet_20200708-32ffb4f7.pth - Config: configs/resnet/resnet50_b32x8_imagenet.py In Collection: ResNet Metadata: FLOPs: 4120000000 Parameters: 25560000 Name: resnet50_b32x8_imagenet Results: - Dataset: ImageNet Metrics: Top 1 Accuracy: 76.55 Top 5 Accuracy: 93.15 Task: Image Classification Weights: https://download.openmmlab.com/mmclassification/v0/resnet/resnet50_batch256_imagenet_20200708-cfb998bf.pth - Config: configs/resnet/resnet101_b32x8_imagenet.py In Collection: ResNet Metadata: FLOPs: 7850000000 Parameters: 44550000 Name: resnet101_b32x8_imagenet Results: - Dataset: ImageNet Metrics: Top 1 Accuracy: 78.18 Top 5 Accuracy: 94.03 Task: Image Classification Weights: https://download.openmmlab.com/mmclassification/v0/resnet/resnet101_batch256_imagenet_20200708-753f3608.pth - Config: configs/resnet/resnet152_b32x8_imagenet.py In Collection: ResNet Metadata: FLOPs: 11580000000 Parameters: 60190000 Name: resnet152_b32x8_imagenet Results: - Dataset: ImageNet Metrics: Top 1 Accuracy: 78.63 Top 5 Accuracy: 94.16 Task: Image Classification Weights: https://download.openmmlab.com/mmclassification/v0/resnet/resnet152_batch256_imagenet_20200708-ec25b1f9.pth - Config: configs/resnet/resnetv1d50_b32x8_imagenet.py In Collection: ResNet Metadata: FLOPs: 4360000000 Parameters: 25580000 Name: resnetv1d50_b32x8_imagenet Results: - Dataset: ImageNet Metrics: Top 1 Accuracy: 77.4 Top 5 Accuracy: 93.66 Task: Image Classification Weights: https://download.openmmlab.com/mmclassification/v0/resnet/resnetv1d50_batch256_imagenet_20200708-1ad0ce94.pth - Config: configs/resnet/resnetv1d101_b32x8_imagenet.py In Collection: ResNet Metadata: FLOPs: 8090000000 Parameters: 44570000 Name: resnetv1d101_b32x8_imagenet Results: - Dataset: ImageNet Metrics: Top 1 Accuracy: 78.85 Top 5 Accuracy: 94.38 Task: Image Classification Weights: https://download.openmmlab.com/mmclassification/v0/resnet/resnetv1d101_batch256_imagenet_20200708-9cb302ef.pth - Config: configs/resnet/resnetv1d152_b32x8_imagenet.py In Collection: ResNet Metadata: FLOPs: 11820000000 Parameters: 60210000 Name: resnetv1d152_b32x8_imagenet Results: - Dataset: ImageNet Metrics: Top 1 Accuracy: 79.35 Top 5 Accuracy: 94.61 Task: Image Classification Weights: https://download.openmmlab.com/mmclassification/v0/resnet/resnetv1d152_batch256_imagenet_20200708-e79cb6a2.pth