train.md 3.03 KB
Newer Older
unknown's avatar
unknown committed
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43

# MMdetection算例测试

## 测试前准备

### 数据集准备

使用coco数据集,放在./data下.

### 环境部署

```python

yum install python3

yum install libquadmath

yum install numactl

yum install openmpi3

yum install glog

yum install lmdb-libs

yum install opencv-core

yum install opencv

yum install openblas-serial

pip3 install --upgrade pip

pip3 install opencv-python

```

### 安装python依赖包

```python
pip3 install torch-1.10.0a0+git2040069.dtk2210-cp37-cp37m-manylinux2014_x86_64.whl -i https://pypi.tuna.tsinghua.edu.cn/simple
pip3 install torchvision-0.10.0a0+e04d001.dtk2210-cp37-cp37m-manylinux2014_x86_64.whl -i https://pypi.tuna.tsinghua.edu.cn/simple
pip3 install mmcv_full-1.6.1+gitdebbc80.dtk2210-cp37-cp37m-manylinux2014_x86_64.whl -i https://pypi.tuna.tsinghua.edu.cn/simple
unknown's avatar
unknown committed
44
mmdet 安装
unknown's avatar
unknown committed
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
cd mmdetection-2.25.2
pip3 install -e .

```

注:测试不同版本的dtk,需安装对应版本的库whl包.

## Faster-Rcnn测试
### 单精度测试

### 单卡测试(单精度)

```python

./sing_test.sh configs/faster_rcnn/faster_rcnn_r50_fpn_1x_coco.py

```

#### 参数说明

configs/_base_/datasets/coco_detection.py 中batch_size=samples_per_gpu*卡数,性能计算方法:batch_size/time

#### 性能关注:time

### 多卡测试(单精度)

#### 单机多卡训练

1.pytorch单机多卡训练

```python

unknown's avatar
unknown committed
77
./tools/dist_train.sh configs/faster_rcnn/faster_rcnn_r50_fpn_1x_coco.py $GPUS
unknown's avatar
unknown committed
78
79
80
81
82
83
84
85
86

```

#### 多机多卡训练

1.pytorch多机多卡训练

在第一台机器上:

unknown's avatar
unknown committed
87
NODES=2 NODE_RANK=0 PORT=12345 MASTER_ADDR=10.1.3.56 sh tools/dist_train.sh configs/faster_rcnn/faster_rcnn_r50_fpn_1x_coco.py $GPUS
unknown's avatar
unknown committed
88
89
90

在第二台机器上:

unknown's avatar
unknown committed
91
NODES=2 NODE_RANK=1 PORT=12345 MASTER_ADDR=10.1.3.56 sh tools/dist_train.sh configs/faster_rcnn/faster_rcnn_r50_fpn_1x_coco.py $GPUS
unknown's avatar
unknown committed
92
93
94
95
96
97
98
99


### 半精度测试

修改configs文件,添加fp16 = dict(loss_scale=512.),单机多卡和多机多卡测试与单精度测试方法相同。

### 其他模型测试

unknown's avatar
unknown committed
100
101
102
103
104
105
106
107
108
109
110
111
112
其他模型的测试步骤和Faster-Rcnn相同,只需修改对应的config文件即可,下面列出相关模型对应的config文件列表:

| 模型              | configs                                                      |
| ----------------- | ------------------------------------------------------------ |
| Mask-Rcnn         | configs/mask_rcnn/mask_rcnn_r50_caffe_fpn_mstrain-poly_1x_coco.py |
| Double-Heads      | configs/double_heads/dh_faster_rcnn_r50_fpn_1x_coco.py       |
| Cascade-Mask-Rcnn | configs/cascade_rcnn/cascade_mask_rcnn_r50_fpn_1x_coco.py    |
| ResNest           | configs/resnest/mask_rcnn_s50_fpn_syncbn-backbone+head_mstrain_1x_coco.py |
| Dcn               | configs/dcn/faster_rcnn_r50_fpn_mdpool_1x_coco.py            |
| RetinaNet         | configs/retinanet/retinanet_r50_caffe_fpn_1x_coco.py         |
| VfNet             | configs/vfnet/vfnet_r50_fpn_1x_coco.py                       |
| Ssd               | configs/ssd/ssd300_coco.py                                   |
| Yolov3            | configs/yolo/yolov3_d53_mstrain-416_273e_coco.py             |
unknown's avatar
unknown committed
113