train.md 2.86 KB
Newer Older
unknown's avatar
unknown committed
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124

# MMdetection算例测试

## 测试前准备

### 数据集准备

使用coco数据集,放在./data下.

### 环境部署

```python

yum install python3

yum install libquadmath

yum install numactl

yum install openmpi3

yum install glog

yum install lmdb-libs

yum install opencv-core

yum install opencv

yum install openblas-serial

pip3 install --upgrade pip

pip3 install opencv-python

```

### 安装python依赖包

```python
pip3 install torch-1.10.0a0+git2040069.dtk2210-cp37-cp37m-manylinux2014_x86_64.whl -i https://pypi.tuna.tsinghua.edu.cn/simple
pip3 install torchvision-0.10.0a0+e04d001.dtk2210-cp37-cp37m-manylinux2014_x86_64.whl -i https://pypi.tuna.tsinghua.edu.cn/simple
pip3 install mmcv_full-1.6.1+gitdebbc80.dtk2210-cp37-cp37m-manylinux2014_x86_64.whl -i https://pypi.tuna.tsinghua.edu.cn/simple
mmcls 安装
cd mmdetection-2.25.2
pip3 install -e .

```

注:测试不同版本的dtk,需安装对应版本的库whl包.

## Faster-Rcnn测试
### 单精度测试

### 单卡测试(单精度)

```python

./sing_test.sh configs/faster_rcnn/faster_rcnn_r50_fpn_1x_coco.py

```

#### 参数说明

configs/_base_/datasets/coco_detection.py 中batch_size=samples_per_gpu*卡数,性能计算方法:batch_size/time

#### 性能关注:time

### 多卡测试(单精度)

#### 单机多卡训练

1.pytorch单机多卡训练

```python

./tools/dist_train.sh configs/faster_rcnn/faster_rcnn_r50_fpn_1x_coco.py

```

#### 多机多卡训练

1.pytorch多机多卡训练

在第一台机器上:

NODES=2 NODE_RANK=0 PORT=12345 MASTER_ADDR=10.1.3.56 sh tools/dist_train.sh configs/faster_rcnn/faster_rcnn_r50_fpn_1x_coco.py 4

在第二台机器上:

NODES=2 NODE_RANK=1 PORT=12345 MASTER_ADDR=10.1.3.56 sh tools/dist_train.sh configs/faster_rcnn/faster_rcnn_r50_fpn_1x_coco.py 4


### 半精度测试

修改configs文件,添加fp16 = dict(loss_scale=512.),单机多卡和多机多卡测试与单精度测试方法相同。

### 其他模型测试

其他模型的测试步骤和ResNet18相同,只需修改对应的config文件即可,下面列出相关模型对应的config文件列表:

| 模型          | configs                                                      |

| ------------- | ------------------------------------------------------------ |

| Mask-Rcnn  | configs/mask_rcnn/mask_rcnn_r50_caffe_fpn_mstrain-poly_1x_coco.py  |

| Double-Heads  | configs/double_heads/dh_faster_rcnn_r50_fpn_1x_coco.py  |

| Cascade-Mask-Rcnn  | configs/cascade_rcnn/cascade_mask_rcnn_r50_fpn_1x_coco.py |

| ResNest  | configs/resnest/mask_rcnn_s50_fpn_syncbn-backbone+head_mstrain_1x_coco.py  |

| Dcn  | configs/dcn/faster_rcnn_r50_fpn_mdpool_1x_coco.py |

| RetinaNet  | configs/retinanet/retinanet_r50_caffe_fpn_1x_coco.py  |

| VfNet  |   configs/vfnet/vfnet_r50_fpn_1x_coco.py  | 

| Ssd  | configs/ssd/ssd300_coco.py  |

|  Yolov3 | configs/yolo/yolov3_d53_mstrain-416_273e_coco.py  |