train.md 2.68 KB
Newer Older
unknown's avatar
unknown committed
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
# MMsegmentation算例测试

## 测试前准备

使用cityscapes数据集.链接:https://pan.baidu.com/s/1kxqTJxoyqcIGTCPOMbzB_g  提取码:asie

### 环境部署

```python
yum install python3
yum install libquadmath
yum install numactl
yum install openmpi3
yum install glog
yum install lmdb-libs
yum install opencv-core
yum install opencv
yum install openblas-serial
pip3 install --upgrade pip
pip3 install opencv-python
```

### 安装python依赖包

```python
unknown's avatar
unknown committed
26
27
28
29
30
pip3 install torch-1.10.0a0+git2040069.dtk2210-cp37-cp37m-manylinux2014_x86_64.whl -i https://pypi.tuna.tsinghua.edu.cn/simple
pip3 install torchvision-0.10.0a0+e04d001.dtk2210-cp37-cp37m-manylinux2014_x86_64.whl -i https://pypi.tuna.tsinghua.edu.cn/simple
pip3 install mmcv_full-1.6.1+gitdebbc80.dtk2210-cp37-cp37m-manylinux2014_x86_64.whl -i https://pypi.tuna.tsinghua.edu.cn/simple
mmseg 安装
cd mmsegmentation-0.29.1
unknown's avatar
unknown committed
31
32
33
pip3 install -e .
```

unknown's avatar
unknown committed
34
注:测试不同版本的dtk,需安装对应版本的库whl包,如果测试优化后的版本,需要设置export HIP_UPSAMPLE_OPTIMIZE=1
unknown's avatar
unknown committed
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51

## PSPNet R50测试

### 单卡测试(单精度)

```python
./sing_test.sh configs/pspnet/pspnet_r50-d8_512x1024_40k_cityscapes.py
```

#### 参数说明

configs/_base_/datasets/cityscapes.py中batch_size=samples_per_gpu*卡数,性能计算方法:batch_size/time

#### 性能关注:time

### 多卡测试(单精度)

unknown's avatar
unknown committed
52
#### 单机多卡训练
unknown's avatar
unknown committed
53

unknown's avatar
unknown committed
54
1.pytorch单机多卡训练
unknown's avatar
unknown committed
55
56

```python
unknown's avatar
unknown committed
57
./multi_test.sh configs/pspnet/pspnet_r50-d8_512x1024_40k_cityscapes.py
unknown's avatar
unknown committed
58
59
```

unknown's avatar
unknown committed
60
#### 多机多卡训练
unknown's avatar
unknown committed
61

unknown's avatar
unknown committed
62
1.pytorch多机多卡训练 在第一台机器上: NODES=2 NODE_RANK=0 PORT=12345 MASTER_ADDR=10.1.3.56 sh tools/dist_train.sh configs/pspnet/pspnet_r50-d8_512x1024_40k_cityscapes.py 4 在第二台机器上: NODES=2 NODE_RANK=1 PORT=12345 MASTER_ADDR=10.1.3.56 sh tools/dist_train.sh configs/pspnet/pspnet_r50-d8_512x1024_40k_cityscapes.py 4
unknown's avatar
unknown committed
63

unknown's avatar
unknown committed
64
### 半精度测试
unknown's avatar
unknown committed
65

unknown's avatar
unknown committed
66
修改configs文件,添加fp16 = dict(loss_scale=512.),单机多卡和多机多卡测试与单精度测试方法相同。
unknown's avatar
unknown committed
67

unknown's avatar
unknown committed
68
### 其他模型测试
unknown's avatar
unknown committed
69

unknown's avatar
unknown committed
70
其他模型的测试步骤和pspnet_r50相同,只需修改对应的config文件即可,下面列出相关模型对应的config文件列表:
unknown's avatar
unknown committed
71

unknown's avatar
unknown committed
72
73
74
75
76
77
| 模型              | configs                                                      |
| ----------------- | ------------------------------------------------------------ |
| DeepLabV3 R50     | configs/deeplabv3/deeplabv3_r50-d8_512x1024_40k_cityscapes.py |
| FCN R50           | configs/fcn/fcn_r50-d8_512x1024_40k_cityscapes.py            |
| UperNet R50       | configs/upernet/upernet_r50_512x1024_40k_cityscapes.py       |
| DeepLabV3plus_R50 | configs/deeplabv3plus/deeplabv3plus_r50-d8_512x1024_40k_cityscapes.py |
unknown's avatar
unknown committed
78