# MMsegmentation算例测试 ## 测试前准备 使用cityscapes数据集.链接:https://pan.baidu.com/s/1kxqTJxoyqcIGTCPOMbzB_g 提取码:asie ### 环境部署 ```python yum install python3 yum install libquadmath yum install numactl yum install openmpi3 yum install glog yum install lmdb-libs yum install opencv-core yum install opencv yum install openblas-serial pip3 install --upgrade pip pip3 install opencv-python ``` ### 安装python依赖包 ```python pip3 install torch-1.10.0a0+git2040069.dtk2210-cp37-cp37m-manylinux2014_x86_64.whl -i https://pypi.tuna.tsinghua.edu.cn/simple pip3 install torchvision-0.10.0a0+e04d001.dtk2210-cp37-cp37m-manylinux2014_x86_64.whl -i https://pypi.tuna.tsinghua.edu.cn/simple pip3 install mmcv_full-1.6.1+gitdebbc80.dtk2210-cp37-cp37m-manylinux2014_x86_64.whl -i https://pypi.tuna.tsinghua.edu.cn/simple mmseg 安装: cd mmsegmentation-0.29.1 pip3 install -e . ``` 注:测试不同版本的dtk,需安装对应版本的库whl包,如果测试优化后的版本,需要设置export HIP_UPSAMPLE_OPTIMIZE=1 ## PSPNet R50测试 ### 单卡测试(单精度) ```python ./sing_test.sh configs/pspnet/pspnet_r50-d8_512x1024_40k_cityscapes.py ``` #### 参数说明 configs/_base_/datasets/cityscapes.py中batch_size=samples_per_gpu*卡数,性能计算方法:batch_size/time #### 性能关注:time ### 多卡测试(单精度) #### 单机多卡训练 1.pytorch单机多卡训练 ```python ./multi_test.sh configs/pspnet/pspnet_r50-d8_512x1024_40k_cityscapes.py ``` #### 多机多卡训练 1.pytorch多机多卡训练 在第一台机器上: NODES=2 NODE_RANK=0 PORT=12345 MASTER_ADDR=10.1.3.56 sh tools/dist_train.sh configs/pspnet/pspnet_r50-d8_512x1024_40k_cityscapes.py 4 在第二台机器上: NODES=2 NODE_RANK=1 PORT=12345 MASTER_ADDR=10.1.3.56 sh tools/dist_train.sh configs/pspnet/pspnet_r50-d8_512x1024_40k_cityscapes.py 4 ### 半精度测试 修改configs文件,添加fp16 = dict(loss_scale=512.),单机多卡和多机多卡测试与单精度测试方法相同。 ### 其他模型测试 其他模型的测试步骤和pspnet_r50相同,只需修改对应的config文件即可,下面列出相关模型对应的config文件列表: | 模型 | configs | | ----------------- | ------------------------------------------------------------ | | DeepLabV3 R50 | configs/deeplabv3/deeplabv3_r50-d8_512x1024_40k_cityscapes.py | | FCN R50 | configs/fcn/fcn_r50-d8_512x1024_40k_cityscapes.py | | UperNet R50 | configs/upernet/upernet_r50_512x1024_40k_cityscapes.py | | DeepLabV3plus_R50 | configs/deeplabv3plus/deeplabv3plus_r50-d8_512x1024_40k_cityscapes.py |