vgg19.py 6.34 KB
Newer Older
zhanggzh's avatar
zhanggzh committed
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
# Copyright 2022 The KerasCV Authors. All Rights Reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
#     http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
# ==============================================================================

"""VGG19 model for KerasCV.

Reference:
  - [Very Deep Convolutional Networks for Large-Scale Image Recognition](https://arxiv.org/abs/1409.1556) (ICLR 2015)
"""

import tensorflow as tf
from tensorflow import keras
from tensorflow.keras import layers

from keras_cv.models import utils


def VGG19(
    include_rescaling,
    include_top,
    classes=None,
    weights=None,
    input_shape=(224, 224, 3),
    input_tensor=None,
    pooling=None,
    classifier_activation="softmax",
    name="VGG19",
    **kwargs,
):
    """Instantiates the VGG19 architecture.

    Reference:
    - [Very Deep Convolutional Networks for Large-Scale Image Recognition](https://arxiv.org/abs/1409.1556) (ICLR 2015)

    This function returns a Keras VGG19 model.

    Args:
      include_rescaling: whether or not to Rescale the inputs.If set to True,
        inputs will be passed through a `Rescaling(1/255.0)` layer.
      include_top: whether to include the 3 fully-connected
        layers at the top of the network. If provided, classes must be provided.
      classes: optional number of classes to classify images into, only to be
        specified if `include_top` is True.
      weights: one of `None` (random initialization), or a pretrained weight file path.
      input_shape: optional shape tuple, defaults to (224, 224, 3).
      input_tensor: optional Keras tensor (i.e. output of `layers.Input()`)
        to use as image input for the model.
      pooling: Optional pooling mode for feature extraction
        when `include_top` is `False`.
        - `None` means that the output of the model will be
            the 4D tensor output of the
            last convolutional block.
        - `avg` means that global average pooling
            will be applied to the output of the
            last convolutional block, and thus
            the output of the model will be a 2D tensor.
        - `max` means that global max pooling will
            be applied.
      classifier_activation: A `str` or callable. The activation function to use
        on the "top" layer. Ignored unless `include_top=True`. Set
        `classifier_activation=None` to return the logits of the "top" layer.
        When loading pretrained weights, `classifier_activation` can only
        be `None` or `"softmax"`.
      name: (Optional) name to pass to the model.  Defaults to "VGG19".

    Returns:
      A `keras.Model` instance.
    """
    if weights and not tf.io.gfile.exists(weights):
        raise ValueError(
            "The `weights` argument should be either `None` or the path to the "
            "weights file to be loaded. Weights file not found at location: {weights}"
        )

    if include_top and not classes:
        raise ValueError(
            "If `include_top` is True, you should specify `classes`. "
            f"Received: classes={classes}"
        )

    inputs = utils.parse_model_inputs(input_shape, input_tensor)

    x = inputs
    if include_rescaling:
        x = layers.Rescaling(1 / 255.0)(x)

    # Block 1
    x = layers.Conv2D(
        64, (3, 3), activation="relu", padding="same", name="block1_conv1"
    )(x)
    x = layers.Conv2D(
        64, (3, 3), activation="relu", padding="same", name="block1_conv2"
    )(x)
    x = layers.MaxPooling2D((2, 2), strides=(2, 2), name="block1_pool")(x)

    # Block 2
    x = layers.Conv2D(
        128, (3, 3), activation="relu", padding="same", name="block2_conv1"
    )(x)
    x = layers.Conv2D(
        128, (3, 3), activation="relu", padding="same", name="block2_conv2"
    )(x)
    x = layers.MaxPooling2D((2, 2), strides=(2, 2), name="block2_pool")(x)

    # Block 3
    x = layers.Conv2D(
        256, (3, 3), activation="relu", padding="same", name="block3_conv1"
    )(x)
    x = layers.Conv2D(
        256, (3, 3), activation="relu", padding="same", name="block3_conv2"
    )(x)
    x = layers.Conv2D(
        256, (3, 3), activation="relu", padding="same", name="block3_conv3"
    )(x)
    x = layers.Conv2D(
        256, (3, 3), activation="relu", padding="same", name="block3_conv4"
    )(x)
    x = layers.MaxPooling2D((2, 2), strides=(2, 2), name="block3_pool")(x)

    # Block 4
    x = layers.Conv2D(
        512, (3, 3), activation="relu", padding="same", name="block4_conv1"
    )(x)
    x = layers.Conv2D(
        512, (3, 3), activation="relu", padding="same", name="block4_conv2"
    )(x)
    x = layers.Conv2D(
        512, (3, 3), activation="relu", padding="same", name="block4_conv3"
    )(x)
    x = layers.Conv2D(
        512, (3, 3), activation="relu", padding="same", name="block4_conv4"
    )(x)
    x = layers.MaxPooling2D((2, 2), strides=(2, 2), name="block4_pool")(x)

    # Block 5
    x = layers.Conv2D(
        512, (3, 3), activation="relu", padding="same", name="block5_conv1"
    )(x)
    x = layers.Conv2D(
        512, (3, 3), activation="relu", padding="same", name="block5_conv2"
    )(x)
    x = layers.Conv2D(
        512, (3, 3), activation="relu", padding="same", name="block5_conv3"
    )(x)
    x = layers.Conv2D(
        512, (3, 3), activation="relu", padding="same", name="block5_conv4"
    )(x)
    x = layers.MaxPooling2D((2, 2), strides=(2, 2), name="block5_pool")(x)

    if include_top:
        x = layers.Flatten(name="flatten")(x)
        x = layers.Dense(4096, activation="relu", name="fc1")(x)
        x = layers.Dense(4096, activation="relu", name="fc2")(x)
        x = layers.Dense(classes, activation=classifier_activation, name="predictions")(
            x
        )
    else:
        if pooling == "avg":
            x = layers.GlobalAveragePooling2D()(x)
        elif pooling == "max":
            x = layers.GlobalMaxPooling2D()(x)

    model = keras.Model(inputs, x, name=name, **kwargs)

    if weights is not None:
        model.load_weights(weights)
    return model