# Copyright 2022 The KerasCV Authors. All Rights Reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. # ============================================================================== """VGG19 model for KerasCV. Reference: - [Very Deep Convolutional Networks for Large-Scale Image Recognition](https://arxiv.org/abs/1409.1556) (ICLR 2015) """ import tensorflow as tf from tensorflow import keras from tensorflow.keras import layers from keras_cv.models import utils def VGG19( include_rescaling, include_top, classes=None, weights=None, input_shape=(224, 224, 3), input_tensor=None, pooling=None, classifier_activation="softmax", name="VGG19", **kwargs, ): """Instantiates the VGG19 architecture. Reference: - [Very Deep Convolutional Networks for Large-Scale Image Recognition](https://arxiv.org/abs/1409.1556) (ICLR 2015) This function returns a Keras VGG19 model. Args: include_rescaling: whether or not to Rescale the inputs.If set to True, inputs will be passed through a `Rescaling(1/255.0)` layer. include_top: whether to include the 3 fully-connected layers at the top of the network. If provided, classes must be provided. classes: optional number of classes to classify images into, only to be specified if `include_top` is True. weights: one of `None` (random initialization), or a pretrained weight file path. input_shape: optional shape tuple, defaults to (224, 224, 3). input_tensor: optional Keras tensor (i.e. output of `layers.Input()`) to use as image input for the model. pooling: Optional pooling mode for feature extraction when `include_top` is `False`. - `None` means that the output of the model will be the 4D tensor output of the last convolutional block. - `avg` means that global average pooling will be applied to the output of the last convolutional block, and thus the output of the model will be a 2D tensor. - `max` means that global max pooling will be applied. classifier_activation: A `str` or callable. The activation function to use on the "top" layer. Ignored unless `include_top=True`. Set `classifier_activation=None` to return the logits of the "top" layer. When loading pretrained weights, `classifier_activation` can only be `None` or `"softmax"`. name: (Optional) name to pass to the model. Defaults to "VGG19". Returns: A `keras.Model` instance. """ if weights and not tf.io.gfile.exists(weights): raise ValueError( "The `weights` argument should be either `None` or the path to the " "weights file to be loaded. Weights file not found at location: {weights}" ) if include_top and not classes: raise ValueError( "If `include_top` is True, you should specify `classes`. " f"Received: classes={classes}" ) inputs = utils.parse_model_inputs(input_shape, input_tensor) x = inputs if include_rescaling: x = layers.Rescaling(1 / 255.0)(x) # Block 1 x = layers.Conv2D( 64, (3, 3), activation="relu", padding="same", name="block1_conv1" )(x) x = layers.Conv2D( 64, (3, 3), activation="relu", padding="same", name="block1_conv2" )(x) x = layers.MaxPooling2D((2, 2), strides=(2, 2), name="block1_pool")(x) # Block 2 x = layers.Conv2D( 128, (3, 3), activation="relu", padding="same", name="block2_conv1" )(x) x = layers.Conv2D( 128, (3, 3), activation="relu", padding="same", name="block2_conv2" )(x) x = layers.MaxPooling2D((2, 2), strides=(2, 2), name="block2_pool")(x) # Block 3 x = layers.Conv2D( 256, (3, 3), activation="relu", padding="same", name="block3_conv1" )(x) x = layers.Conv2D( 256, (3, 3), activation="relu", padding="same", name="block3_conv2" )(x) x = layers.Conv2D( 256, (3, 3), activation="relu", padding="same", name="block3_conv3" )(x) x = layers.Conv2D( 256, (3, 3), activation="relu", padding="same", name="block3_conv4" )(x) x = layers.MaxPooling2D((2, 2), strides=(2, 2), name="block3_pool")(x) # Block 4 x = layers.Conv2D( 512, (3, 3), activation="relu", padding="same", name="block4_conv1" )(x) x = layers.Conv2D( 512, (3, 3), activation="relu", padding="same", name="block4_conv2" )(x) x = layers.Conv2D( 512, (3, 3), activation="relu", padding="same", name="block4_conv3" )(x) x = layers.Conv2D( 512, (3, 3), activation="relu", padding="same", name="block4_conv4" )(x) x = layers.MaxPooling2D((2, 2), strides=(2, 2), name="block4_pool")(x) # Block 5 x = layers.Conv2D( 512, (3, 3), activation="relu", padding="same", name="block5_conv1" )(x) x = layers.Conv2D( 512, (3, 3), activation="relu", padding="same", name="block5_conv2" )(x) x = layers.Conv2D( 512, (3, 3), activation="relu", padding="same", name="block5_conv3" )(x) x = layers.Conv2D( 512, (3, 3), activation="relu", padding="same", name="block5_conv4" )(x) x = layers.MaxPooling2D((2, 2), strides=(2, 2), name="block5_pool")(x) if include_top: x = layers.Flatten(name="flatten")(x) x = layers.Dense(4096, activation="relu", name="fc1")(x) x = layers.Dense(4096, activation="relu", name="fc2")(x) x = layers.Dense(classes, activation=classifier_activation, name="predictions")( x ) else: if pooling == "avg": x = layers.GlobalAveragePooling2D()(x) elif pooling == "max": x = layers.GlobalMaxPooling2D()(x) model = keras.Model(inputs, x, name=name, **kwargs) if weights is not None: model.load_weights(weights) return model