model.py 5.03 KB
Newer Older
huchen's avatar
huchen committed
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
import math
import torch
import torch.nn as nn
import torch.nn.functional as F
from genotypes import STEPS
from utils import mask2d
from utils import LockedDropout
from utils import embedded_dropout
from torch.autograd import Variable

INITRANGE = 0.04


class DARTSCell(nn.Module):

  def __init__(self, ninp, nhid, dropouth, dropoutx, genotype):
    super(DARTSCell, self).__init__()
    self.nhid = nhid
    self.dropouth = dropouth
    self.dropoutx = dropoutx
    self.genotype = genotype

    # genotype is None when doing arch search
    steps = len(self.genotype.recurrent) if self.genotype is not None else STEPS
    self._W0 = nn.Parameter(torch.Tensor(ninp+nhid, 2*nhid).uniform_(-INITRANGE, INITRANGE))
    self._Ws = nn.ParameterList([
        nn.Parameter(torch.Tensor(nhid, 2*nhid).uniform_(-INITRANGE, INITRANGE)) for i in range(steps)
    ])

  def forward(self, inputs, hidden):
    T, B = inputs.size(0), inputs.size(1)

    if self.training:
      x_mask = mask2d(B, inputs.size(2), keep_prob=1.-self.dropoutx)
      h_mask = mask2d(B, hidden.size(2), keep_prob=1.-self.dropouth)
    else:
      x_mask = h_mask = None

    hidden = hidden[0]
    hiddens = []
    for t in range(T):
      hidden = self.cell(inputs[t], hidden, x_mask, h_mask)
      hiddens.append(hidden)
    hiddens = torch.stack(hiddens)
    return hiddens, hiddens[-1].unsqueeze(0)

  def _compute_init_state(self, x, h_prev, x_mask, h_mask):
    if self.training:
      xh_prev = torch.cat([x * x_mask, h_prev * h_mask], dim=-1)
    else:
      xh_prev = torch.cat([x, h_prev], dim=-1)
    c0, h0 = torch.split(xh_prev.mm(self._W0), self.nhid, dim=-1)
    c0 = c0.sigmoid()
    h0 = h0.tanh()
    s0 = h_prev + c0 * (h0-h_prev)
    return s0

  def _get_activation(self, name):
    if name == 'tanh':
      f = F.tanh
    elif name == 'relu':
      f = F.relu
    elif name == 'sigmoid':
      f = F.sigmoid
    elif name == 'identity':
      f = lambda x: x
    else:
      raise NotImplementedError
    return f

  def cell(self, x, h_prev, x_mask, h_mask):
    s0 = self._compute_init_state(x, h_prev, x_mask, h_mask)

    states = [s0]
    for i, (name, pred) in enumerate(self.genotype.recurrent):
      s_prev = states[pred]
      if self.training:
        ch = (s_prev * h_mask).mm(self._Ws[i])
      else:
        ch = s_prev.mm(self._Ws[i])
      c, h = torch.split(ch, self.nhid, dim=-1)
      c = c.sigmoid()
      fn = self._get_activation(name)
      h = fn(h)
      s = s_prev + c * (h-s_prev)
      states += [s]
    output = torch.mean(torch.stack([states[i] for i in self.genotype.concat], -1), -1)
    return output


class RNNModel(nn.Module):
    """Container module with an encoder, a recurrent module, and a decoder."""

    def __init__(self, ntoken, ninp, nhid, nhidlast, 
                 dropout=0.5, dropouth=0.5, dropoutx=0.5, dropouti=0.5, dropoute=0.1,
                 cell_cls=DARTSCell, genotype=None):
        super(RNNModel, self).__init__()
        self.lockdrop = LockedDropout()
        self.encoder = nn.Embedding(ntoken, ninp)
        
        assert ninp == nhid == nhidlast
        if cell_cls == DARTSCell:
            assert genotype is not None
            self.rnns = [cell_cls(ninp, nhid, dropouth, dropoutx, genotype)]
        else:
            assert genotype is None
            self.rnns = [cell_cls(ninp, nhid, dropouth, dropoutx)]

        self.rnns = torch.nn.ModuleList(self.rnns)
        self.decoder = nn.Linear(ninp, ntoken)
        self.decoder.weight = self.encoder.weight
        self.init_weights()

        self.ninp = ninp
        self.nhid = nhid
        self.nhidlast = nhidlast
        self.dropout = dropout
        self.dropouti = dropouti
        self.dropoute = dropoute
        self.ntoken = ntoken
        self.cell_cls = cell_cls

    def init_weights(self):
        self.encoder.weight.data.uniform_(-INITRANGE, INITRANGE)
        self.decoder.bias.data.fill_(0)
        self.decoder.weight.data.uniform_(-INITRANGE, INITRANGE)

    def forward(self, input, hidden, return_h=False):
        batch_size = input.size(1)

        emb = embedded_dropout(self.encoder, input, dropout=self.dropoute if self.training else 0)
        emb = self.lockdrop(emb, self.dropouti)

        raw_output = emb
        new_hidden = []
        raw_outputs = []
        outputs = []
        for l, rnn in enumerate(self.rnns):
            current_input = raw_output
            raw_output, new_h = rnn(raw_output, hidden[l])
            new_hidden.append(new_h)
            raw_outputs.append(raw_output)
        hidden = new_hidden

        output = self.lockdrop(raw_output, self.dropout)
        outputs.append(output)

        logit = self.decoder(output.view(-1, self.ninp))
        log_prob = nn.functional.log_softmax(logit, dim=-1)
        model_output = log_prob
        model_output = model_output.view(-1, batch_size, self.ntoken)

        if return_h:
            return model_output, hidden, raw_outputs, outputs
        return model_output, hidden

    def init_hidden(self, bsz):
      weight = next(self.parameters()).data
      return [Variable(weight.new(1, bsz, self.nhid).zero_())]