import math import torch import torch.nn as nn import torch.nn.functional as F from genotypes import STEPS from utils import mask2d from utils import LockedDropout from utils import embedded_dropout from torch.autograd import Variable INITRANGE = 0.04 class DARTSCell(nn.Module): def __init__(self, ninp, nhid, dropouth, dropoutx, genotype): super(DARTSCell, self).__init__() self.nhid = nhid self.dropouth = dropouth self.dropoutx = dropoutx self.genotype = genotype # genotype is None when doing arch search steps = len(self.genotype.recurrent) if self.genotype is not None else STEPS self._W0 = nn.Parameter(torch.Tensor(ninp+nhid, 2*nhid).uniform_(-INITRANGE, INITRANGE)) self._Ws = nn.ParameterList([ nn.Parameter(torch.Tensor(nhid, 2*nhid).uniform_(-INITRANGE, INITRANGE)) for i in range(steps) ]) def forward(self, inputs, hidden): T, B = inputs.size(0), inputs.size(1) if self.training: x_mask = mask2d(B, inputs.size(2), keep_prob=1.-self.dropoutx) h_mask = mask2d(B, hidden.size(2), keep_prob=1.-self.dropouth) else: x_mask = h_mask = None hidden = hidden[0] hiddens = [] for t in range(T): hidden = self.cell(inputs[t], hidden, x_mask, h_mask) hiddens.append(hidden) hiddens = torch.stack(hiddens) return hiddens, hiddens[-1].unsqueeze(0) def _compute_init_state(self, x, h_prev, x_mask, h_mask): if self.training: xh_prev = torch.cat([x * x_mask, h_prev * h_mask], dim=-1) else: xh_prev = torch.cat([x, h_prev], dim=-1) c0, h0 = torch.split(xh_prev.mm(self._W0), self.nhid, dim=-1) c0 = c0.sigmoid() h0 = h0.tanh() s0 = h_prev + c0 * (h0-h_prev) return s0 def _get_activation(self, name): if name == 'tanh': f = F.tanh elif name == 'relu': f = F.relu elif name == 'sigmoid': f = F.sigmoid elif name == 'identity': f = lambda x: x else: raise NotImplementedError return f def cell(self, x, h_prev, x_mask, h_mask): s0 = self._compute_init_state(x, h_prev, x_mask, h_mask) states = [s0] for i, (name, pred) in enumerate(self.genotype.recurrent): s_prev = states[pred] if self.training: ch = (s_prev * h_mask).mm(self._Ws[i]) else: ch = s_prev.mm(self._Ws[i]) c, h = torch.split(ch, self.nhid, dim=-1) c = c.sigmoid() fn = self._get_activation(name) h = fn(h) s = s_prev + c * (h-s_prev) states += [s] output = torch.mean(torch.stack([states[i] for i in self.genotype.concat], -1), -1) return output class RNNModel(nn.Module): """Container module with an encoder, a recurrent module, and a decoder.""" def __init__(self, ntoken, ninp, nhid, nhidlast, dropout=0.5, dropouth=0.5, dropoutx=0.5, dropouti=0.5, dropoute=0.1, cell_cls=DARTSCell, genotype=None): super(RNNModel, self).__init__() self.lockdrop = LockedDropout() self.encoder = nn.Embedding(ntoken, ninp) assert ninp == nhid == nhidlast if cell_cls == DARTSCell: assert genotype is not None self.rnns = [cell_cls(ninp, nhid, dropouth, dropoutx, genotype)] else: assert genotype is None self.rnns = [cell_cls(ninp, nhid, dropouth, dropoutx)] self.rnns = torch.nn.ModuleList(self.rnns) self.decoder = nn.Linear(ninp, ntoken) self.decoder.weight = self.encoder.weight self.init_weights() self.ninp = ninp self.nhid = nhid self.nhidlast = nhidlast self.dropout = dropout self.dropouti = dropouti self.dropoute = dropoute self.ntoken = ntoken self.cell_cls = cell_cls def init_weights(self): self.encoder.weight.data.uniform_(-INITRANGE, INITRANGE) self.decoder.bias.data.fill_(0) self.decoder.weight.data.uniform_(-INITRANGE, INITRANGE) def forward(self, input, hidden, return_h=False): batch_size = input.size(1) emb = embedded_dropout(self.encoder, input, dropout=self.dropoute if self.training else 0) emb = self.lockdrop(emb, self.dropouti) raw_output = emb new_hidden = [] raw_outputs = [] outputs = [] for l, rnn in enumerate(self.rnns): current_input = raw_output raw_output, new_h = rnn(raw_output, hidden[l]) new_hidden.append(new_h) raw_outputs.append(raw_output) hidden = new_hidden output = self.lockdrop(raw_output, self.dropout) outputs.append(output) logit = self.decoder(output.view(-1, self.ninp)) log_prob = nn.functional.log_softmax(logit, dim=-1) model_output = log_prob model_output = model_output.view(-1, batch_size, self.ntoken) if return_h: return model_output, hidden, raw_outputs, outputs return model_output, hidden def init_hidden(self, bsz): weight = next(self.parameters()).data return [Variable(weight.new(1, bsz, self.nhid).zero_())]