task_iflytek_gradient_penalty.py 5.27 KB
Newer Older
huchen's avatar
huchen committed
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
#! -*- coding:utf-8 -*-
# 通过梯度惩罚增强模型的泛化性能
# 比CLUE榜单公开的同数据集上的BERT base的成绩高2%
# 数据集:IFLYTEK' 长文本分类 (https://github.com/CLUEbenchmark/CLUE)
# 博客:https://kexue.fm/archives/7234
# 适用于Keras 2.3.1

import json
import numpy as np
from bert4keras.backend import keras, search_layer, K
from bert4keras.tokenizers import Tokenizer
from bert4keras.models import build_transformer_model
from bert4keras.optimizers import Adam
from bert4keras.snippets import sequence_padding, DataGenerator
from keras.layers import Lambda, Dense
from tqdm import tqdm

num_classes = 119
maxlen = 128
batch_size = 32

# BERT base
config_path = '/root/kg/bert/chinese_L-12_H-768_A-12/bert_config.json'
checkpoint_path = '/root/kg/bert/chinese_L-12_H-768_A-12/bert_model.ckpt'
dict_path = '/root/kg/bert/chinese_L-12_H-768_A-12/vocab.txt'


def load_data(filename):
    """加载数据
    单条格式:(文本, 标签id)
    """
    D = []
    with open(filename) as f:
        for i, l in enumerate(f):
            l = json.loads(l)
            text, label = l['sentence'], l['label']
            D.append((text, int(label)))
    return D


# 加载数据集
train_data = load_data(
    '/root/CLUE-master/baselines/CLUEdataset/iflytek/train.json'
)
valid_data = load_data(
    '/root/CLUE-master/baselines/CLUEdataset/iflytek/dev.json'
)

# 建立分词器
tokenizer = Tokenizer(dict_path, do_lower_case=True)


class data_generator(DataGenerator):
    """数据生成器
    """
    def __iter__(self, random=False):
        batch_token_ids, batch_segment_ids, batch_labels = [], [], []
        for is_end, (text, label) in self.sample(random):
            token_ids, segment_ids = tokenizer.encode(text, maxlen=maxlen)
            batch_token_ids.append(token_ids)
            batch_segment_ids.append(segment_ids)
            batch_labels.append([label])
            if len(batch_token_ids) == self.batch_size or is_end:
                batch_token_ids = sequence_padding(batch_token_ids)
                batch_segment_ids = sequence_padding(batch_segment_ids)
                batch_labels = sequence_padding(batch_labels)
                yield [batch_token_ids, batch_segment_ids], batch_labels
                batch_token_ids, batch_segment_ids, batch_labels = [], [], []


# 转换数据集
train_generator = data_generator(train_data, batch_size)
valid_generator = data_generator(valid_data, batch_size)

# 加载预训练模型
bert = build_transformer_model(
    config_path=config_path,
    checkpoint_path=checkpoint_path,
    return_keras_model=False,
)

output = Lambda(lambda x: x[:, 0])(bert.model.output)
output = Dense(
    units=num_classes,
    activation='softmax',
    kernel_initializer=bert.initializer
)(output)

model = keras.models.Model(bert.model.input, output)
model.summary()


def sparse_categorical_crossentropy(y_true, y_pred):
    """自定义稀疏交叉熵
    这主要是因为keras自带的sparse_categorical_crossentropy不支持求二阶梯度。
    """
    y_true = K.reshape(y_true, K.shape(y_pred)[:-1])
    y_true = K.cast(y_true, 'int32')
    y_true = K.one_hot(y_true, K.shape(y_pred)[-1])
    return K.categorical_crossentropy(y_true, y_pred)


def loss_with_gradient_penalty(y_true, y_pred, epsilon=1):
    """带梯度惩罚的loss
    """
    loss = K.mean(sparse_categorical_crossentropy(y_true, y_pred))
    embeddings = search_layer(y_pred, 'Embedding-Token').embeddings
    gp = K.sum(K.gradients(loss, [embeddings])[0].values**2)
    return loss + 0.5 * epsilon * gp


model.compile(
    loss=loss_with_gradient_penalty,
    optimizer=Adam(2e-5),
    metrics=['sparse_categorical_accuracy'],
)


def evaluate(data):
    total, right = 0., 0.
    for x_true, y_true in data:
        y_pred = model.predict(x_true).argmax(axis=1)
        y_true = y_true[:, 0]
        total += len(y_true)
        right += (y_true == y_pred).sum()
    return right / total


class Evaluator(keras.callbacks.Callback):
    """评估与保存
    """
    def __init__(self):
        self.best_val_acc = 0.

    def on_epoch_end(self, epoch, logs=None):
        val_acc = evaluate(valid_generator)
        if val_acc > self.best_val_acc:
            self.best_val_acc = val_acc
            model.save_weights('best_model.weights')
        print(
            u'val_acc: %.5f, best_val_acc: %.5f\n' %
            (val_acc, self.best_val_acc)
        )


def predict_to_file(in_file, out_file):
    """输出预测结果到文件
    结果文件可以提交到 https://www.cluebenchmarks.com 评测。
    """
    fw = open(out_file, 'w')
    with open(in_file) as fr:
        for l in tqdm(fr):
            l = json.loads(l)
            text = l['sentence']
            token_ids, segment_ids = tokenizer.encode(text, maxlen=maxlen)
            label = model.predict([[token_ids], [segment_ids]])[0].argmax()
            l = json.dumps({'id': str(l['id']), 'label': str(label)})
            fw.write(l + '\n')
    fw.close()


if __name__ == '__main__':

    evaluator = Evaluator()

    model.fit(
        train_generator.forfit(),
        steps_per_epoch=len(train_generator),
        epochs=50,
        callbacks=[evaluator]
    )

else:

    model.load_weights('best_model.weights')
    # predict_to_file('/root/CLUE-master/baselines/CLUEdataset/iflytek/test.json', 'iflytek_predict.json')