mem.cpp 4.33 KB
Newer Older
Antoine Kaufmann's avatar
Antoine Kaufmann committed
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
#include <iostream>

#include "mem.h"
#include "dma.h"

/*
 * 1024 bits total data width
 * = 128 bytes total
 *
 * 1024 / 8 = 128 bit per segment
 * = 16 bytes / segment
 */

#define DATA_WIDTH (512 * 2)
#define SEG_COUNT 8
#define SEG_WIDTH (DATA_WIDTH / SEG_COUNT)

void MemWriter::step()
{
    if (cur && p.mem_ready) {
Antoine Kaufmann's avatar
Antoine Kaufmann committed
21
        //std::cerr << "completed write to: " << cur->ram_addr << std::endl;
Antoine Kaufmann's avatar
Antoine Kaufmann committed
22
23
24
25
26
27
28
29
30
31
32
        p.mem_valid = 0;
        p.mem_be[0] = p.mem_be[1] = p.mem_be[2] = p.mem_be[3] = 0;

        cur->engine->mem_op_complete(cur);
        cur = 0;
    }

    if (!cur && !pending.empty()) {
        cur = pending.front();
        pending.pop_front();

Antoine Kaufmann's avatar
Antoine Kaufmann committed
33
        //std::cerr << "issuing write to " << cur->ram_addr << std::endl;
Antoine Kaufmann's avatar
Antoine Kaufmann committed
34
35
36

        size_t data_byte_width = DATA_WIDTH / 8;
        size_t data_offset = cur->ram_addr % data_byte_width;
Antoine Kaufmann's avatar
Antoine Kaufmann committed
37

Antoine Kaufmann's avatar
Antoine Kaufmann committed
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
        if (cur->len > data_byte_width - data_offset) {
            std::cerr << "MemWriter::step: cannot be written in one cycle TODO" << std::endl;
            throw "unsupported";
        }

        /* first reset everything */
        p.mem_sel = 0;
        p.mem_addr[0] = p.mem_addr[1] = p.mem_addr[2] = 0;
        p.mem_be[0] = p.mem_be[1] = p.mem_be[2] = p.mem_be[3] = 0;
        p.mem_valid = 0;


        /* put data bytes in the right places */
        size_t off = data_offset;
        for (size_t i = 0; i < cur->len; i++, off++) {
            size_t byte_off = off % 4;
            // first clear data byte
            p.mem_data[off / 4] &= ~(0xffu << (byte_off * 8));
            // then set data byte
            p.mem_data[off / 4] |= (((uint32_t) cur->data[i]) << (byte_off * 8));
            p.mem_be[off / 32] |= (1 << (off % 32));
            p.mem_valid |= (1 << (off / (SEG_WIDTH / 8)));
        }

        uint64_t seg_addr = cur->ram_addr / data_byte_width;
        size_t seg_addr_bits = 12;

        // iterate over the address bit by bit
        for (size_t i = 0; i < seg_addr_bits; i++) {
            uint32_t bit = ((seg_addr >> i) & 0x1);
            // iterate over the segments
            for (size_t j = 0; j < SEG_COUNT; j++) {
                size_t dst_bit = j * seg_addr_bits + i;
                p.mem_addr[dst_bit / 32] |= (bit << (dst_bit % 32));
            }
        }
    }
}

void MemWriter::op_issue(DMAOp *op)
{
Antoine Kaufmann's avatar
Antoine Kaufmann committed
79
    //std::cerr << "enqueued write to " << op->ram_addr << std::endl;
Antoine Kaufmann's avatar
Antoine Kaufmann committed
80
81
    pending.push_back(op);
}
Antoine Kaufmann's avatar
Antoine Kaufmann committed
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152




void MemReader::step()
{
    size_t data_byte_width = DATA_WIDTH / 8;

    if (cur && p.mem_resvalid) {
        std::cerr << "completed read from: " << cur->ram_addr << std::endl;
        p.mem_valid = 0;
        p.mem_resready = 0;

        size_t off = cur->ram_addr % data_byte_width;
        for (size_t i = 0; i < cur->len; i++, off++) {
            size_t byte_off = off % 4;
            cur->data[i] = (p.mem_data[off / 4] >> (byte_off * 8)) & 0xff;
        }

        cur->engine->mem_op_complete(cur);
        cur = 0;
    }

    if (!cur && !pending.empty()) {
        cur = pending.front();
        pending.pop_front();

        std::cerr << "issuing read from " << cur->ram_addr << std::endl;

        size_t data_offset = cur->ram_addr % data_byte_width;

        if (cur->len > data_byte_width - data_offset) {
            std::cerr << "MemReader::step: cannot be written in one cycle TODO" << std::endl;
            throw "unsupported";
        }

        /* first reset everything */
        p.mem_sel = 0;
        p.mem_addr[0] = p.mem_addr[1] = p.mem_addr[2] = 0;
        p.mem_valid = 0x0;


        /* put data bytes in the right places */
        size_t off = data_offset;
        for (size_t i = 0; i < cur->len; i++, off++) {
            size_t byte_off = off % 4;
            p.mem_valid |= (1 << (off / (SEG_WIDTH / 8)));
        }

        uint64_t seg_addr = cur->ram_addr / data_byte_width;
        size_t seg_addr_bits = 12;

        // iterate over the address bit by bit
        for (size_t i = 0; i < seg_addr_bits; i++) {
            uint32_t bit = ((seg_addr >> i) & 0x1);
            // iterate over the segments
            for (size_t j = 0; j < SEG_COUNT; j++) {
                size_t dst_bit = j * seg_addr_bits + i;
                p.mem_addr[dst_bit / 32] |= (bit << (dst_bit % 32));
            }
        }

        p.mem_resready = 1;
    }
}

void MemReader::op_issue(DMAOp *op)
{
    std::cerr << "enqueued read from " << op->ram_addr << std::endl;
    pending.push_back(op);
}