1. 02 May, 2024 1 commit
  2. 01 May, 2024 2 commits
  3. 25 Apr, 2024 1 commit
  4. 24 Apr, 2024 1 commit
  5. 18 Apr, 2024 3 commits
    • Zach Mueller's avatar
      馃毃馃毃馃毃Deprecate `evaluation_strategy` to `eval_strategy`馃毃馃毃馃毃 (#30190) · 60d5f8f9
      Zach Mueller authored
      * Alias
      
      * Note alias
      
      * Tests and src
      
      * Rest
      
      * Clean
      
      * Change typing?
      
      * Fix tests
      
      * Deprecation versions
      60d5f8f9
    • Abhi Venigalla's avatar
      Add DBRX Model (#29921) · 005b957f
      Abhi Venigalla authored
      
      
      * wip
      
      * fix __init__.py
      
      * add docs
      
      * Apply suggestions from code review
      Co-authored-by: default avatarArthur <48595927+ArthurZucker@users.noreply.github.com>
      
      * address comments 1
      
      * work on make fixup
      
      * pass configs down
      
      * add sdpa attention
      
      * remove DbrxBlock
      
      * add to configuration_auto
      
      * docstring now passes formatting test
      
      * fix style
      
      * update READMEs
      
      * add dbrx to modeling_auto
      
      * make fix-copies generated this
      
      * add DBRX_PRETRAINED_CONFIG_ARCHIVE_MAP
      
      * config docstring passes formatting test
      
      * rename moe_loss_weight to router_aux_loss_coef
      
      * add to flash-attn documentation
      
      * fix model-path in tests
      
      * Explicitly make `"suli"` the default `ffn_act_fn`
      Co-authored-by: default avatarWing Lian <wing.lian@gmail.com>
      
      * default to using router_aux_loss_coef over ffn_config[moe_loss_weight]
      
      * fix _flash_attn_uses_top_left_mask and is_causal
      
      * fix tests path
      
      * don't use token type IDs
      
      * follow Llama and remove token_type_ids from test
      
      * init ConfigTester differently so tests pass
      
      * remove multiple choice test
      
      * remove question + answer test
      
      * remove sequence classification test
      
      * remove token classification test
      
      * copy Llama tests and remove token_type_ids from test inputs
      
      * do not test pruning or headmasking; style code
      
      * add _tied_weights_keys parameter to pass test
      
      * add type hints
      
      * fix type check
      
      * update config tester
      
      * remove masked_lm test
      
      * remove encoder tests
      
      * initialize DbrxModelTester with correct params
      
      * style
      
      * torch_dtype does not rely on torch
      
      * run make fixup, fix-copies
      
      * use https://huggingface.co/v2ray/dbrx-base-fixed/blob/main/modeling_dbrx.py
      
      
      
      * add copyright info
      
      * fix imports and DbrxRotaryEmbedding
      
      * update DbrxModel docstring
      
      * use copies
      
      * change model path in docstring
      
      * use config in DbrxFFN
      
      * fix flashattention2, sdpaattention
      
      * input config to DbrXAttention, DbrxNormAttentionNorm
      
      * more fixes
      
      * fix
      
      * fix again!
      
      * add informative comment
      
      * fix ruff?
      
      * remove print statement + style
      
      * change doc-test
      
      * fix doc-test
      
      * fix docstring
      
      * delete commented out text
      
      * make defaults match dbrx-instruct
      
      * replace `router_aux_loss_coef` with `moe_loss_weight`
      
      * is_decoder=True
      
      * remove is_decoder from configtester
      
      * implement sdpa properly
      
      * make is_decoder pass tests
      
      * start on the GenerationTesterMixin tests
      
      * add dbrx to sdpa documentation
      
      * skip weight typing test
      
      * style
      
      * initialize smaller model
      Co-authored-by: default avatarMatt <Rocketknight1@users.noreply.github.com>
      
      * Add DBRX to toctree
      
      * skip test_new_cache_format
      
      * make config defaults smaller again
      
      * add pad_token_id
      
      * remove pad_token_id from config
      
      * Remove all references to DBRX_PRETRAINED_CONFIG_ARCHIVE_MAP
      
      * Update src/transformers/models/dbrx/__init__.py
      Co-authored-by: default avatarArthur <48595927+ArthurZucker@users.noreply.github.com>
      
      * Update src/transformers/models/dbrx/modeling_dbrx.py
      Co-authored-by: default avatarArthur <48595927+ArthurZucker@users.noreply.github.com>
      
      * Update docs/source/en/model_doc/dbrx.md
      Co-authored-by: default avatarMatt <Rocketknight1@users.noreply.github.com>
      
      * Update src/transformers/models/dbrx/configuration_dbrx.py
      Co-authored-by: default avatarArthur <48595927+ArthurZucker@users.noreply.github.com>
      
      * Update docs/source/en/model_doc/dbrx.md
      Co-authored-by: default avatarArthur <48595927+ArthurZucker@users.noreply.github.com>
      
      * fix typo
      
      * Apply suggestions from code review
      Co-authored-by: default avatarArthur <48595927+ArthurZucker@users.noreply.github.com>
      
      * update docs, fix configuration_auto.py
      
      * address pr comments
      
      * remove is_decoder flag
      
      * slice
      
      * fix requires grad
      
      * remove grad
      
      * disconnect differently
      
      * remove grad
      
      * enable grads
      
      * patch
      
      * detach expert
      
      * nissan al ghaib
      
      * Update modeling_dbrx.py
      
      * Update src/transformers/models/dbrx/modeling_dbrx.py
      Co-authored-by: default avatarMatt <Rocketknight1@users.noreply.github.com>
      
      * replace "Gemma" with "Dbrx"
      
      * remove # type: ignore
      
      * don't hardcode vocab_size
      
      * remove ToDo
      
      * Re-add removed idefics2 line
      
      * Update test to use tiny-random!
      
      * Remove TODO
      
      * Remove one more case of loading the entire dbrx-instruct in the tests
      
      * Update src/transformers/models/dbrx/modeling_dbrx.py
      Co-authored-by: default avataramyeroberts <22614925+amyeroberts@users.noreply.github.com>
      
      * address some comments
      
      * small model
      
      * add dbrx to tokenization_auto
      
      * More docstrings with add_start_docstrings
      
      * Dbrx for now
      
      * add PipelineTesterMixin
      
      * Update src/transformers/models/dbrx/configuration_dbrx.py
      Co-authored-by: default avataramyeroberts <22614925+amyeroberts@users.noreply.github.com>
      
      * remove flash-attn2 import error
      
      * fix docstring
      Co-authored-by: default avataramyeroberts <22614925+amyeroberts@users.noreply.github.com>
      
      * add useage example
      
      * put on one line
      Co-authored-by: default avataramyeroberts <22614925+amyeroberts@users.noreply.github.com>
      
      * fix ffn_act_fn
      Co-authored-by: default avataramyeroberts <22614925+amyeroberts@users.noreply.github.com>
      
      * change "dbrx" to "DBRX" for display purposes.
      
      * fix __init__.py?
      
      * fix __init__.py
      
      * fix README
      
      * return the aux_loss
      
      * remove extra spaces
      
      * fix configuration_auto.py
      
      * fix format in tokenization_auto
      
      * remove new line
      
      * add more useage examples
      
      ---------
      Co-authored-by: default avatarAbhi Venigalla <abhi.venigalla@databricks.com>
      Co-authored-by: default avatarArthur <48595927+ArthurZucker@users.noreply.github.com>
      Co-authored-by: default avatarEitan Turok <eitan.turok@databricks.com>
      Co-authored-by: default avatarEitan Turok <150733043+eitanturok@users.noreply.github.com>
      Co-authored-by: default avatarWing Lian <wing.lian@gmail.com>
      Co-authored-by: default avatarEitan Turok <eitanturok@gmail.com>
      Co-authored-by: default avatarMatt <Rocketknight1@users.noreply.github.com>
      Co-authored-by: default avatarMatt <rocketknight1@gmail.com>
      Co-authored-by: default avatarYour Name <you@example.com>
      Co-authored-by: default avatarMihir Patel <mihir.v.patel7@gmail.com>
      Co-authored-by: default avataramyeroberts <22614925+amyeroberts@users.noreply.github.com>
      005b957f
    • tomeras91's avatar
      Add jamba (#29943) · 3f20877d
      tomeras91 authored
      * Add jamba arch
      
      * apply "make fix-copies" changes
      
      * fix link to model in JambaConfig docstring
      
      * Add n_ctx in modeling file because repo-consistency wants that
      
      * Add jamba to flash attention and sdpa documentation
      
      * mamba dt_proj quant fix now works for LoRA as well
      
      * override test_left_padding_compatibility and use a more permissive tolerance. left padding numerical difference are accentuated by mamba layers
      
      * add jamba to tokenization auto
      
      * fix comments of shape (PR #24 in the model page: https://huggingface.co/ai21labs/Jamba-v0.1/discussions/24)
      
      * simple PR fixes
      
      * remove unnecessary kwargs from JambaAttentionDecoderLayer and JambaMambaDecoderLayer
      
      * remove the LoRA hack for the mamba dt_proj bias. It was solved in huggingface/peft#1530 (https://github.com/huggingface/peft/pull/1530)
      
      * Add copied comment on JambaMLP (it's the same as MixtralMLP)
      
      * remove padding_mask warnings. It's not supported anymore
      
      * fix docstring. Float instead of int
      
      * A few more minor PR fixes
      
      * (1) lowercase names for mamba layernorms (2) remove _apply_inner_layernorms and do it directly in the forward pass
      
      * Return None attention weights from mamba layers. Append to all attentions only if not None.
      
      * remove some leftover jamba archive lists
      
      * Better separation between expert vs non-expert layers. non-expert layers return None as router_logits, and it is not concatenated to all_router_logits returned from JambaModel
      
      * no need to take router_logits at config.expert_layer_offset anymore. result.router_logits now holds results only for expert layers
      
      * Add Jamba paper on READMEs
      
      * (1) rename n_ctx -> max_position_embeddings (2) don't use it in the modeling file since it's not needed (set it as an exception to check_config_attributes)
      
      * Add copied from comment
      
      * remove the code path for apply_inner_layernorms=False. Jamba always has the inner mamba layernorms
      
      * clearer docstring for _convert_to_standard_cache
      
      * style fixes
      
      * Change calc_logits_for_entire_prompt (bool) to num_logits_to_keep (int). Adapt assisted decoding code tp use it. Also small change in low memory beam search decoding path to support this new int value in model_inputs
      
      * rename test so it still overrides what its meant to override
      
      * draft
      
      * oups
      
      * nit
      
      * remove more complexe logic
      
      * fix names used in config
      
      * fix fix fix
      
      * style
      
      * fix some more failing tests
      
      * generate did not init the cache 馃檭
      
      
      
      * more small nits
      
      * typo
      
      * config.mamba_expand * config.hidden_size for the intermediate size of the mamba shapes
      
      * fix init of pkv with torch.tensor()
      
      * empty tensor
      
      * fix some init issues
      
      * stupid changes required by generate because it does not even support it's own DynamicCache class
      
      * more fixes
      
      * fix general assisted gen cache_position bug
      
      * tests passing
      
      * Add offsets and periods as SPECIAL_CASES_TO_ALLOW in check_config_attributes.py
      
      * fix reorder_cache to reorder mamba states and override some more functions in HybridMambaAttentionDynamicCache
      
      * no need to override test_past_key_values_format() and _check_past_key_values_for_generate() in tests anymore
      
      * fix docstrings and typehints for past_key_values
      
      * style fixes
      
      * fix docs
      
      * change typehint due to copy from Mixtral
      
      * forgot import
      
      * import order
      
      * Add configuration_jamba and modeling_jamba to not_doctested because the model is too big to download (in docstring of JambaForCausalLM.forward)
      
      * Add integration test with tiny tandom Jamba model on hub
      
      * fix flash attention cache shapes
      
      * bring back forgotten hidden states
      
      * rename HybridMambaAttentionDynamicCache.seqlen_offset to has_previous_state (and make bool) and bugfix - it should be set to True after a finished forward pass of the entire model
      
      * align integration test after modeling fixes
      
      * bugfix - mamba can use precomputed states only of forward pass is on a single token
      
      * bugfix - mamba can use precomputed states only if they match the batch size
      
      * typo
      
      * remove making _prepare_4d_causal_attention_mask a leaf function
      
      * stop using past_seq_len.get_seq_length(). Use cache positions instead. Adjust test (test_decoder_model_past_with_large_inputs) accordingly
      
      ---------
      Co-authored-by: default avatarArthur Zucker <arthur.zucker@gmail.com>
      Co-authored-by: default avatarJoao Gante <joao@huggingface.co>
      3f20877d
  6. 17 Apr, 2024 2 commits
    • Shane A's avatar
      Add OLMo model family (#29890) · e4ea19b9
      Shane A authored
      * Add OLMo using add-new-model-like with Llama
      
      * Fix incorrect tokenizer for OLMo
      
      * Copy-paste relevant OLMo methods and their imports
      
      * Add OLMo config
      
      * Modify OLMo config to follow HF conventions
      
      * Remove unneeded Llama code from OLMo model
      
      * Add ability for OLMo model to output attentions
      
      * Add OLMoPreTrainedModel and OLMoModel
      
      * Add OLMoForCausalLM
      
      * Minor fixes to OLMo model for style and missing functions
      
      * Implement OLMo tokenizer
      
      * Implement OLMo to HF conversion script
      
      * Add tests for OLMo model
      
      * Add tests for OLMo fast tokenizer
      
      * Add auto-generated dummy objects
      
      * Remove unimplemented OLMo classes from auto and init classes and re-format
      
      * Add README and associated auto-generated files
      
      * Use OLMo names for common properties
      
      * Run make fixup
      
      * Remove `|` from OLMo typing
      
      * Remove unneeded tokenization_olmo.py
      
      * Revert model, config and converter to add-new-model-like Llama
      
      * Move logic for adding bos/eos token into GPTNeoxTokenizerFast
      
      * Change OLMoConfig defaults to match OLMo-7B
      
      * Use GPTNeoXToknizerFast in OLMo tokenizer tests
      
      * Modify auto-generated OLMoModelTests to work for OLMo
      
      * Add non-parametric layer norm OLMoLayerNorm
      
      * Update weight conversion script for OLMo
      
      * Fix __init__ and auto structure for OLMo
      
      * Fix errors from make fixup
      
      * Remove OLMoTokenizerFast from documentation
      
      * Add missing 'Copied from' for OLMoModel._update_causal_mask
      
      * Run make fix-copies
      
      * Rearrange string replacements in OLMoForCausalLM Copied from
      
      * Move OLMo and Llama CausalLM.forward example into global constants
      
      * Fix OLMO_GENERATION_EXAMPLE doc string typo
      
      * Add option for qkv clipping to OLMo
      
      * Rearrange OLMoConfig kwargs in convert_olmo_weights_to_hf
      
      * Add clip_qkv to OLMoConfig in convert_olmo_weights_to_hf
      
      * Fix OLMo tokenization bug using conversion script
      
      * Keep model in full precision after conversion
      
      * Do not add eos token automatically
      
      * Update references to OLMo model in HF Hub
      
      * Do not add eos token during encoding by default
      
      * Fix Llama generation example
      
      * Run make fixup
      
      * OLMo 7B integration test fix
      
      * Remove unneeded special case for OLMoConfig
      
      * OLMo 7B Twin 2T integration test fix
      
      * Fix test_model_7b_greedy_generation
      
      * Remove test_compile_static_cache
      
      * Fix OLMo and Llama generation example
      
      * Run make fixup
      
      * Revert "OLMo 7B integration test fix"
      
      This reverts commit 4df56a4b150681bfa559846f40e9b7b7f97d7908.
      
      * Revert "OLMo 7B Twin 2T integration test fix"
      
      This reverts commit 9ff65a4a294ace89ab047b793ca55e623a9ceefc.
      
      * Ungate 7B integration tests and fix greedy generation test
      
      * Add retries for flaky test_eager_matches_sdpa_generate
      
      * Fix output of doc example for OLMoForCausalLM.forward
      
      * Downsize OLMo doc test for OLMoForCausalLM.forward to 1B model
      
      * Try fix incorrect characters in OLMoForCausalLM.forward doct test
      
      * Try fix incorrect characters in OLMoForCausalLM.forward doc test using end quotes
      
      * Remove pretraining_tp from OLMo config and model
      
      * Add missing 'Copied from' instances
      
      * Remove unneeded causal_mask from OLMoModel
      
      * Revert Llama changes
      
      * Ignore copy for OLMoForCausalLM.forward
      
      * Change 'OLMo' to 'Olmo' in classes
      
      * Move minimal OLMo tokenization tests to model tests
      
      * Add missed 'Copied from' for repeat_kv
      e4ea19b9
    • Utkarsha Gupte's avatar
      Configuring Translation Pipelines documents update #27753 (#29986) · 98717cb3
      Utkarsha Gupte authored
      * Configuring Translation Pipelines documents update #27753
      
      Configuring Translation Pipelines documents update
      
      * Language Format Addition
      
      * adding supported list of languages list
      98717cb3
  7. 15 Apr, 2024 1 commit
  8. 10 Apr, 2024 1 commit
    • Arthur's avatar
      Add recurrent gemma (#30143) · 0fe44059
      Arthur authored
      
      
      * Fork.
      
      * RecurrentGemma initial commit.
      
      * Updating __init__.py.
      
      * Minor modification to how we initialize the cache.
      Changing how the config specifies the architecture.
      
      * Reformat code to 4 spaces.
      Fixed a few typos.
      
      * Fixed the forward pass.
      Still unclear on the cache?
      
      * Fixed the RecurrentGemmaForCausalLM
      
      * Minor comment that we might not need attention_mask and output_attention arguments.
      
      * Now cache should work as well.
      
      * Adding a temporary example to check whether the model generation works.
      
      * Adding the tests and updating imports.
      
      * Adding the example file missing in the previous commit.
      
      * First working example.
      
      * Removing .gitignore and reverting parts of __init__.
      
      * Re-add .gitignore.
      
      * Addressing comments for configuration.
      
      * Move mask creation to `_prepare_inputs_for_generation`.
      
      * First try at integration tests:
      1. AttributeError: 'GriffinCausalLMOutput' object has no attribute 'attentions'.
      2. `cache_position` not passed
      
      * Transfoering between machines.
      
      * Running normal tests.
      
      * Minor fix.
      
      * More fixes.
      
      * Addressing more comments.
      
      * Minor fixes.
      
      * first stab at cleanup
      
      * more refactoring
      
      * fix copies and else
      
      * renaming and get init to work
      
      * fix causal mask creation
      
      * update
      
      * nit
      
      * fix a hell lot of things
      
      * updates
      
      * update conversion script
      
      * make all keys importable
      
      * nits
      
      * add auto mappings
      
      * properly convert ffw_up and down
      
      * add scaling
      
      * fix generations
      
      * for recurrent dtype
      
      * update
      
      * fix going beyong window
      
      * fixup
      
      * add missing files
      
      * current updates to remove last einops
      
      * finish modeling refactor
      
      * TADA
      
      * fix compile
      
      * fix most failing testt ? ?
      
      * update tests
      
      * refactor and update
      
      * update
      
      * nits, fixup and update tests
      
      * more fixup
      
      * nits
      
      * fix imports
      
      * test format
      
      * fixups
      
      * nits
      
      * tuple typing
      
      * fix code quality
      
      * add model card
      
      * fix doc
      
      * skip most generation tests
      
      * nits
      
      * style
      
      * doc fixes
      
      * fix pr and check_copies?
      
      * last nit
      
      * oupsy
      
      * Apply suggestions from code review
      Co-authored-by: default avatarLysandre Debut <hi@lysand.re>
      
      * update
      
      * Update src/transformers/models/recurrent_gemma/convert_recurrent_gemma_to_hf.py
      Co-authored-by: default avataramyeroberts <22614925+amyeroberts@users.noreply.github.com>
      
      * Update tests/models/recurrent_gemma/test_modeling_recurrent_gemma.py
      Co-authored-by: default avataramyeroberts <22614925+amyeroberts@users.noreply.github.com>
      
      * Update tests/models/recurrent_gemma/test_modeling_recurrent_gemma.py
      Co-authored-by: default avataramyeroberts <22614925+amyeroberts@users.noreply.github.com>
      
      * Update tests/models/recurrent_gemma/test_modeling_recurrent_gemma.py
      Co-authored-by: default avataramyeroberts <22614925+amyeroberts@users.noreply.github.com>
      
      * Update tests/models/recurrent_gemma/test_modeling_recurrent_gemma.py
      Co-authored-by: default avataramyeroberts <22614925+amyeroberts@users.noreply.github.com>
      
      * update based on review
      
      * doc nit
      
      * fix quality
      
      * quality
      
      * fix slow test model path
      
      * update default dype
      
      * ignore attributes that can be safely ignored in check config attributes
      
      * 0lallalala come on
      
      * save nit
      
      * style
      
      * remove to dict update
      
      * make sure we can also run in float16
      
      * style
      
      ---------
      Co-authored-by: default avatarPablo Montalvo <39954772+molbap@users.noreply.github.com>
      Co-authored-by: default avatarAleksandar Botev <botev@google.com>
      Co-authored-by: default avatarLeonard Berrada <lberrada@users.noreply.github.com>
      Co-authored-by: default avataranushanf <anushanf@google.com>
      Co-authored-by: default avatarbotev <botevmg@gmail.com>
      Co-authored-by: default avatarLysandre Debut <hi@lysand.re>
      Co-authored-by: default avataramyeroberts <22614925+amyeroberts@users.noreply.github.com>
      0fe44059
  9. 09 Apr, 2024 2 commits
  10. 05 Apr, 2024 1 commit
  11. 28 Mar, 2024 1 commit
  12. 27 Mar, 2024 1 commit
    • Bo Zheng's avatar
      Add Qwen2MoE (#29377) · 1c39974a
      Bo Zheng authored
      
      
      * add support for qwen2 MoE models
      
      * update docs
      
      * add support for qwen2 MoE models
      
      * update docs
      
      * update model name & test
      
      * update readme
      
      * update class names & readme & model_doc of Qwen2MoE.
      
      * update architecture name
      
      * fix qwen2_moe tests
      
      * use Qwen2Tokenizer instead of Qwen2MoeTokenizer
      
      * update modeling_qwen2_moe.py
      
      * fix model architecture
      
      * fix qwen2_moe tests
      
      * use Qwen2Tokenizer instead of Qwen2MoeTokenizer
      
      * update modeling_qwen2_moe.py
      
      * fix model architecture
      
      * fix style
      
      * fix test when there are sparse and non sparse layers
      
      * fixup
      
      * Update README.md
      Co-authored-by: default avatarArthur <48595927+ArthurZucker@users.noreply.github.com>
      
      * fixup
      
      * fixup
      
      * add archive back
      
      * add support for qwen2 MoE models
      
      * update docs
      
      * update model name & test
      
      * update readme
      
      * update class names & readme & model_doc of Qwen2MoE.
      
      * update architecture name
      
      * fix qwen2_moe tests
      
      * use Qwen2Tokenizer instead of Qwen2MoeTokenizer
      
      * update modeling_qwen2_moe.py
      
      * fix model architecture
      
      * fixup
      
      * fix qwen2_moe tests
      
      * use Qwen2Tokenizer instead of Qwen2MoeTokenizer
      
      * fix style
      
      * fix test when there are sparse and non sparse layers
      
      * fixup
      
      * add archive back
      
      * fix integration test
      
      * fixup
      
      ---------
      Co-authored-by: default avatarbozheng-hit <dsoul0621@gmail.com>
      Co-authored-by: default avatarArthur <48595927+ArthurZucker@users.noreply.github.com>
      1c39974a
  13. 26 Mar, 2024 1 commit
  14. 18 Mar, 2024 1 commit
    • Yoach Lacombe's avatar
      Add MusicGen Melody (#28819) · c43b380e
      Yoach Lacombe authored
      
      
      * first modeling code
      
      * make repository
      
      * still WIP
      
      * update model
      
      * add tests
      
      * add latest change
      
      * clean docstrings and copied from
      
      * update docstrings md and readme
      
      * correct chroma function
      
      * correct copied from and remove unreleated test
      
      * add doc to toctree
      
      * correct imports
      
      * add convert script to notdoctested
      
      * Add suggestion from Sanchit
      Co-authored-by: default avatarSanchit Gandhi <93869735+sanchit-gandhi@users.noreply.github.com>
      
      * correct get_uncoditional_inputs docstrings
      
      * modify README according to SANCHIT feedback
      
      * add chroma to audio utils
      
      * clean librosa and torchaudio hard dependencies
      
      * fix FE
      
      * refactor audio decoder -> audio encoder for consistency with previous musicgen
      
      * refactor conditional -> encoder
      
      * modify sampling rate logics
      
      * modify license at the beginning
      
      * refactor all_self_attns->all_attentions
      
      * remove ignore copy from causallm generate
      
      * add copied from for from_sub_models
      
      * fix make copies
      
      * add warning if audio is truncated
      
      * add copied from where relevant
      
      * remove artefact
      
      * fix convert script
      
      * fix torchaudio and FE
      
      * modify chroma method according to feedback-> better naming
      
      * refactor input_values->input_features
      
      * refactor input_values->input_features and fix import fe
      
      * add input_features to docstrigs
      
      * correct inputs_embeds logics
      
      * remove dtype conversion
      
      * refactor _prepare_conditional_hidden_states_kwargs_for_generation ->_prepare_encoder_hidden_states_kwargs_for_generation
      
      * change warning for chroma length
      
      * Update src/transformers/models/musicgen_melody/convert_musicgen_melody_transformers.py
      Co-authored-by: default avatarSanchit Gandhi <93869735+sanchit-gandhi@users.noreply.github.com>
      
      * change way to save wav, using soundfile
      
      * correct docs and change to soundfile
      
      * fix import
      
      * fix init proj layers
      
      * remove line breaks from md
      
      * fix issue with docstrings
      
      * add FE suggestions
      
      * improve is in logics and remove useless imports
      
      * remove custom from_pretrained
      
      * simplify docstring code
      
      * add suggestions for modeling tests
      
      * make style
      
      * update converting script with sanity check
      
      * remove encoder attention mask from conditional generation
      
      * replace musicgen melody checkpoints with official orga
      
      * rename ylacombe->facebook in checkpoints
      
      * fix copies
      
      * remove unecessary warning
      
      * add shape in code docstrings
      
      * add files to slow doc tests
      
      * fix md bug and add md to not_tested
      
      * make fix-copies
      
      * fix hidden states test and batching
      
      ---------
      Co-authored-by: default avatarSanchit Gandhi <93869735+sanchit-gandhi@users.noreply.github.com>
      c43b380e
  15. 15 Mar, 2024 1 commit
    • Saurabh Dash's avatar
      Cohere Model Release (#29622) · 0e4a1c34
      Saurabh Dash authored
      
      
      * Cohere Model Release (#1)
      
      Cohere Model Release
      
      * Remove unnecessary files and code (#2)
      
      Some cleanup
      
      * Delete cohere-model directory (#3)
      
      * Make Fix (#5)
      
      * Pr fixes (#6)
      
      * fixes for pr
      
      * pr fixes for the format
      
      * pr fixes for the format
      
      * src/transformers/models/auto/tokenization_auto.py
      
      * Tokenizer test (#8)
      
      * tokenizer test
      
      * format fix
      
      * Adding Docs and other minor changes (#7)
      
      * Add modeling tests (#9)
      
      * Smol Fix (#11)
      
      * tokenization tests are fixed
      
      * format fixes
      
      * fix pr doc tests
      
      * fix pr doc tests
      
      * fix pr doc tests
      
      * fix pr style check
      
      * small changes in cohere.md
      
      * FIX: Address final comments for transformers integration (#13)
      
      * fix modeling final nits and add proper test file
      
      * for now leave empty tests
      
      * add integration test
      
      * push new test
      
      * fix modeling cohere (#14)
      
      * Update chat templates to use the new API (#15)
      
      ---------
      Co-authored-by: default avatarahmetustun <ahmetustun89@gmail.com>
      Co-authored-by: default avatarYounes Belkada <49240599+younesbelkada@users.noreply.github.com>
      Co-authored-by: default avatarMatt <Rocketknight1@users.noreply.github.com>
      0e4a1c34
  16. 13 Mar, 2024 1 commit
    • Nate Cibik's avatar
      Add PvT-v2 Model (#26812) · 1fc505b8
      Nate Cibik authored
      
      
      * Added pytests for pvt-v2, all passed
      
      * Added pvt_v2 to docs/source/end/model_doc
      
      * Ran fix-copies and fixup. All checks passed
      
      * Added additional ReLU for linear attention mode
      
      * pvt_v2_b2_linear converted and working
      
      * copied models/pvt to adapt to pvt_v2
      
      * First commit of pvt_v2
      
      * PvT-v2 now works in AutoModel
      
      * Reverted batch eval changes for PR
      
      * Expanded type support for Pvt-v2 config
      
      * Fixed config docstring. Added channels property
      
      * Fixed model names in tests
      
      * Fixed config backbone compat. Added additional type support for image size in config
      
      * Fixed config backbone compat
      
      * Allowed for batching of eval metrics
      
      * copied models/pvt to adapt to pvt_v2
      
      * First commit of pvt_v2
      
      * Set key and value layers to use separate linear modules. Fixed pruning function
      
      * Set AvgPool to 7
      
      * Fixed issue in init
      
      * PvT-v2 now works in AutoModel
      
      * Successful conversion of pretrained weights for PVT-v2
      
      * Successful conversion of pretrained weights for PVT-v2 models
      
      * Added pytests for pvt-v2, all passed
      
      * Ran fix-copies and fixup. All checks passed
      
      * Added additional ReLU for linear attention mode
      
      * pvt_v2_b2_linear converted and working
      
      * Allowed for batching of eval metrics
      
      * copied models/pvt to adapt to pvt_v2
      
      * First commit of pvt_v2
      
      * Set key and value layers to use separate linear modules. Fixed pruning function
      
      * Set AvgPool to 7
      
      * Fixed issue in init
      
      * PvT-v2 now works in AutoModel
      
      * Successful conversion of pretrained weights for PVT-v2
      
      * Successful conversion of pretrained weights for PVT-v2 models
      
      * Added pytests for pvt-v2, all passed
      
      * Ran fix-copies and fixup. All checks passed
      
      * Added additional ReLU for linear attention mode
      
      * pvt_v2_b2_linear converted and working
      
      * Reverted batch eval changes for PR
      
      * Updated index.md
      
      * Expanded type support for Pvt-v2 config
      
      * Fixed config docstring. Added channels property
      
      * Fixed model names in tests
      
      * Fixed config backbone compat
      
      * Ran fix-copies
      
      * Fixed PvtV2Backbone tests
      
      * Added TFRegNet to OBJECTS_TO_IGNORE in check_docstrings.py
      
      * Fixed backbone stuff and fixed tests: all passing
      
      * Ran make fixup
      
      * Made modifications for code checks
      
      * Remove ONNX config from configuration_pvt_v2.py
      Co-authored-by: default avataramyeroberts <22614925+amyeroberts@users.noreply.github.com>
      
      * Use explicit image size dict in test_modeling_pvt_v2.py
      Co-authored-by: default avataramyeroberts <22614925+amyeroberts@users.noreply.github.com>
      
      * Make image_size optional in test_modeling_pvt_v2.py
      Co-authored-by: default avataramyeroberts <22614925+amyeroberts@users.noreply.github.com>
      
      * Remove _ntuple use in modeling_pvt_v2.py
      Co-authored-by: default avataramyeroberts <22614925+amyeroberts@users.noreply.github.com>
      
      * Remove reference to fp16_enabled
      
      * Model modules now take config as first argument even when not used
      
      * Replaced abbreviations for "SR" and "AP" with explicit "spatialreduction" and "averagepooling"
      
      * All LayerNorm now instantiates with config.layer_norm_eps
      
      * Added docstring for depth-wise conv layer
      
      * PvtV2Config now only takes Union[int, Tuple[int, int]] for image size
      
      * Refactored PVTv2 in prep for gradient checkpointing
      
      * Gradient checkpointing ready to test
      
      * Removed override of _set_gradient_checkpointing
      
      * Cleaned out old code
      
      * Applied code fixup
      
      * Applied code fixup
      
      * Began debug of pvt_v2 tests
      
      * Leave handling of num_labels to base pretrained config class
      
      * Deactivated gradient checkpointing tests until it is fixed
      
      * Removed PvtV2ImageProcessor which duped PvtImageProcessor
      
      * Allowed for batching of eval metrics
      
      * copied models/pvt to adapt to pvt_v2
      
      * First commit of pvt_v2
      
      * Set key and value layers to use separate linear modules. Fixed pruning function
      
      * Set AvgPool to 7
      
      * Fixed issue in init
      
      * PvT-v2 now works in AutoModel
      
      * Successful conversion of pretrained weights for PVT-v2
      
      * Successful conversion of pretrained weights for PVT-v2 models
      
      * Added pytests for pvt-v2, all passed
      
      * Added pvt_v2 to docs/source/end/model_doc
      
      * Ran fix-copies and fixup. All checks passed
      
      * Added additional ReLU for linear attention mode
      
      * pvt_v2_b2_linear converted and working
      
      * copied models/pvt to adapt to pvt_v2
      
      * First commit of pvt_v2
      
      * PvT-v2 now works in AutoModel
      
      * Reverted batch eval changes for PR
      
      * Expanded type support for Pvt-v2 config
      
      * Fixed config docstring. Added channels property
      
      * Fixed model names in tests
      
      * Fixed config backbone compat. Added additional type support for image size in config
      
      * Fixed config backbone compat
      
      * Allowed for batching of eval metrics
      
      * copied models/pvt to adapt to pvt_v2
      
      * First commit of pvt_v2
      
      * Set key and value layers to use separate linear modules. Fixed pruning function
      
      * Set AvgPool to 7
      
      * Fixed issue in init
      
      * PvT-v2 now works in AutoModel
      
      * Successful conversion of pretrained weights for PVT-v2
      
      * Successful conversion of pretrained weights for PVT-v2 models
      
      * Added pytests for pvt-v2, all passed
      
      * Ran fix-copies and fixup. All checks passed
      
      * Added additional ReLU for linear attention mode
      
      * pvt_v2_b2_linear converted and working
      
      * Allowed for batching of eval metrics
      
      * copied models/pvt to adapt to pvt_v2
      
      * First commit of pvt_v2
      
      * Set key and value layers to use separate linear modules. Fixed pruning function
      
      * Set AvgPool to 7
      
      * Fixed issue in init
      
      * PvT-v2 now works in AutoModel
      
      * Successful conversion of pretrained weights for PVT-v2
      
      * Successful conversion of pretrained weights for PVT-v2 models
      
      * Added pytests for pvt-v2, all passed
      
      * Ran fix-copies and fixup. All checks passed
      
      * Added additional ReLU for linear attention mode
      
      * pvt_v2_b2_linear converted and working
      
      * Reverted batch eval changes for PR
      
      * Expanded type support for Pvt-v2 config
      
      * Fixed config docstring. Added channels property
      
      * Fixed model names in tests
      
      * Fixed config backbone compat
      
      * Ran fix-copies
      
      * Fixed PvtV2Backbone tests
      
      * Added TFRegNet to OBJECTS_TO_IGNORE in check_docstrings.py
      
      * Fixed backbone stuff and fixed tests: all passing
      
      * Ran make fixup
      
      * Made modifications for code checks
      
      * Remove ONNX config from configuration_pvt_v2.py
      Co-authored-by: default avataramyeroberts <22614925+amyeroberts@users.noreply.github.com>
      
      * Use explicit image size dict in test_modeling_pvt_v2.py
      Co-authored-by: default avataramyeroberts <22614925+amyeroberts@users.noreply.github.com>
      
      * Make image_size optional in test_modeling_pvt_v2.py
      Co-authored-by: default avataramyeroberts <22614925+amyeroberts@users.noreply.github.com>
      
      * Remove _ntuple use in modeling_pvt_v2.py
      Co-authored-by: default avataramyeroberts <22614925+amyeroberts@users.noreply.github.com>
      
      * Remove reference to fp16_enabled
      
      * Model modules now take config as first argument even when not used
      
      * Replaced abbreviations for "SR" and "AP" with explicit "spatialreduction" and "averagepooling"
      
      * All LayerNorm now instantiates with config.layer_norm_eps
      
      * Added docstring for depth-wise conv layer
      
      * PvtV2Config now only takes Union[int, Tuple[int, int]] for image size
      
      * Refactored PVTv2 in prep for gradient checkpointing
      
      * Gradient checkpointing ready to test
      
      * Removed override of _set_gradient_checkpointing
      
      * Cleaned out old code
      
      * Applied code fixup
      
      * Applied code fixup
      
      * Allowed for batching of eval metrics
      
      * copied models/pvt to adapt to pvt_v2
      
      * First commit of pvt_v2
      
      * PvT-v2 now works in AutoModel
      
      * Ran fix-copies and fixup. All checks passed
      
      * copied models/pvt to adapt to pvt_v2
      
      * First commit of pvt_v2
      
      * PvT-v2 now works in AutoModel
      
      * Reverted batch eval changes for PR
      
      * Fixed config docstring. Added channels property
      
      * Fixed config backbone compat
      
      * Allowed for batching of eval metrics
      
      * copied models/pvt to adapt to pvt_v2
      
      * First commit of pvt_v2
      
      * PvT-v2 now works in AutoModel
      
      * Ran fix-copies and fixup. All checks passed
      
      * Allowed for batching of eval metrics
      
      * copied models/pvt to adapt to pvt_v2
      
      * First commit of pvt_v2
      
      * PvT-v2 now works in AutoModel
      
      * Fixed config backbone compat
      
      * Ran fix-copies
      
      * Began debug of pvt_v2 tests
      
      * Leave handling of num_labels to base pretrained config class
      
      * Deactivated gradient checkpointing tests until it is fixed
      
      * Removed PvtV2ImageProcessor which duped PvtImageProcessor
      
      * Fixed issue from rebase
      
      * Fixed issue from rebase
      
      * Set tests for gradient checkpointing to skip those using reentrant since it isn't supported
      
      * Fixed issue from rebase
      
      * Fixed issue from rebase
      
      * Changed model name in docs
      
      * Removed duplicate PvtV2Backbone
      
      * Work around type switching issue in tests
      
      * Fix model name in config comments
      
      * Update docs/source/en/model_doc/pvt_v2.md
      Co-authored-by: default avatarArthur <48595927+ArthurZucker@users.noreply.github.com>
      
      * Changed name of variable from 'attn_reduce' to 'sr_type'
      
      * Changed name of variable from 'attn_reduce' to 'sr_type'
      
      * Changed from using 'sr_type' to 'linear_attention' for clarity
      
      * Update src/transformers/models/pvt_v2/modeling_pvt_v2.py
      
      Removed old code
      
      * Changed from using 'sr_type' to 'linear_attention' for clarity
      
      * Fixed Class names to be more descriptive
      
      * Update src/transformers/models/pvt_v2/modeling_pvt_v2.py
      
      Removed outdated code
      
      * Moved paper abstract to single line in pvt_v2.md
      
      * Added usage tips to pvt_v2.md
      
      * Simplified module inits by passing layer_idx
      
      * Fixed typing for hidden_act in PvtV2Config
      
      * Removed unusued import
      
      * Add pvt_v2 to docs/source/en/_toctree.yml
      
      * Updated documentation in docs/source/en/model_doc/pvt_v2.md to be more comprehensive.
      
      * Updated documentation in docs/source/en/model_doc/pvt_v2.md to be more comprehensive.
      
      * Update src/transformers/models/pvt_v2/modeling_pvt_v2.py
      
      Move function parameters to single line
      Co-authored-by: default avataramyeroberts <22614925+amyeroberts@users.noreply.github.com>
      
      * Update src/transformers/models/pvt_v2/modeling_pvt_v2.py
      
      Update year of copyright to 2024
      Co-authored-by: default avataramyeroberts <22614925+amyeroberts@users.noreply.github.com>
      
      * Update src/transformers/models/pvt_v2/modeling_pvt_v2.py
      
      Make code more explicit
      Co-authored-by: default avataramyeroberts <22614925+amyeroberts@users.noreply.github.com>
      
      * Updated sr_ratio to be more explicit spatial_reduction_ratio
      
      * Removed excess type hints in modeling_pvt_v2.py
      Co-authored-by: default avataramyeroberts <22614925+amyeroberts@users.noreply.github.com>
      
      * Move params to single line in modeling_pvt_v2.py
      Co-authored-by: default avataramyeroberts <22614925+amyeroberts@users.noreply.github.com>
      
      * Removed needless comment in modeling_pvt_v2.py
      Co-authored-by: default avataramyeroberts <22614925+amyeroberts@users.noreply.github.com>
      
      * Update copyright date in pvt_v2.md
      Co-authored-by: default avataramyeroberts <22614925+amyeroberts@users.noreply.github.com>
      
      * Moved params to single line in modeling_pvt_v2.py
      Co-authored-by: default avataramyeroberts <22614925+amyeroberts@users.noreply.github.com>
      
      * Updated copyright date in configuration_pvt_v2.py
      Co-authored-by: default avataramyeroberts <22614925+amyeroberts@users.noreply.github.com>
      
      * Cleaned comments in modeling_pvt_v2.py
      Co-authored-by: default avataramyeroberts <22614925+amyeroberts@users.noreply.github.com>
      
      * Renamed spatial_reduction Conv2D operation
      
      * Revert "Update src/transformers/models/pvt_v2/modeling_pvt_v2.py
      "
      
      This reverts commit c4a04416dde8f3475ab405d1feb368600e0f8538.
      
      * Updated conversion script to reflect module name change
      
      * Deprecated reshape_last_stage option in config
      
      * Removed unused imports
      
      * Code formatting
      
      * Fixed outdated decorators on test_inference_fp16
      
      * Added "Copied from" comments in test_modeling_pvt_v2.py
      
      * Fixed import listing
      
      * Updated model name
      
      * Force empty commit for PR refresh
      
      * Fixed linting issue
      
      * Removed # Copied from comments
      
      * Added PVTv2 to README_fr.md
      
      * Ran make fix-copies
      
      * Replace all FoamoftheSea hub references with OpenGVLab
      
      * Fixed out_indices and out_features logic in configuration_pvt_v2.py
      
      * Made ImageNet weight conversion verification optional in convert_pvt_v2_to_pytorch.py
      
      * Ran code fixup
      
      * Fixed order of parent classes in PvtV2Config to fix the to_dict method override
      
      ---------
      Co-authored-by: default avataramyeroberts <22614925+amyeroberts@users.noreply.github.com>
      Co-authored-by: default avatarArthur <48595927+ArthurZucker@users.noreply.github.com>
      1fc505b8
  17. 05 Mar, 2024 1 commit
    • Arthur's avatar
      [`Add Mamba`] Adds support for the `Mamba` models (#28094) · fb1c62e9
      Arthur authored
      
      
      * initial-commit
      
      * start cleaning
      
      * small nits
      
      * small nits
      
      * current updates
      
      * add kernels
      
      * small refactoring little step
      
      * add comments
      
      * styling
      
      * nit
      
      * nits
      
      * Style
      
      * Small changes
      
      * Push dummy mambda simple slow
      
      * nit
      
      * Use original names
      
      * Use original names and remove norm
      
      * Updates for inference params
      
      * Style nd updates
      
      * nits
      
      * Match logits
      
      * Add a test
      
      * Add expected generated text
      
      * nits doc, imports and styling
      
      * style
      
      * oups
      
      * dont install kernels, invite users to install the required kernels
      
      * let use use the original packages
      
      * styling
      
      * nits
      
      * fix some copieds
      
      * update doc
      
      * fix-copies
      
      * styling done
      
      * nits
      
      * fix import check
      
      * run but wrong cuda ress
      
      * mamba CUDA works :)
      
      * fix the fast path
      
      * config naming nits
      
      * conversion script is not required at this stage
      
      * finish fixing the fast path: generation make sense now!
      
      * nit
      
      * Let's start working on the CIs
      
      * style
      
      * better style
      
      * more nits
      
      * test nit
      
      * quick fix for now
      
      * nits
      
      * nit
      
      * nit
      
      * nit
      
      * nits
      
      * update test rest
      
      * fixup
      
      * update test
      
      * nit
      
      * some fixes
      
      * nits
      
      * update test values
      
      * fix styling
      
      * nit
      
      * support peft
      
      * integrations tests require torchg
      
      * also add slow markers
      
      * styling
      
      * chose forward wisely
      
      * nits
      
      * update tests
      
      * fix gradient checkpointing
      
      * fixup
      
      * nit
      
      * fix doc
      
      * check copies
      
      * fix the docstring
      
      * fix some more tests
      
      * style
      
      * fix beam search
      
      * add init schene
      
      * update
      
      * nit
      
      * fix
      
      * fixup the doc
      
      * fix the doc
      
      * fixup
      
      * tentative update but slow is no longer good
      
      * nit
      
      * should we always use float32?
      
      * nits
      
      * revert wrong changes
      
      * res in float32
      
      * cleanup
      
      * skip fmt for now
      
      * update generation values
      
      * update test values running original model
      
      * fixup
      
      * update tests + rename inference_params to cache_params + make sure training does not use cache_params
      
      * small nits
      
      * more nits
      
      * fix final CIs
      
      * style
      
      * nit doc
      
      * I hope final doc nits
      
      * nit
      
      * 馃珷
      
      * final touch!
      
      * fix torch import
      
      * Apply suggestions from code review
      Co-authored-by: default avatarLysandre Debut <hi@lysand.re>
      
      * Apply suggestions from code review
      
      * fix fix and fix
      
      * fix base model prefix!
      
      * nit
      
      * Update src/transformers/models/mamba/__init__.py
      
      * Update docs/source/en/model_doc/mamba.md
      Co-authored-by: default avatarLysandre Debut <hi@lysand.re>
      
      * nit
      
      ---------
      Co-authored-by: default avatarLysandre Debut <hi@lysand.re>
      fb1c62e9
  18. 28 Feb, 2024 1 commit
  19. 27 Feb, 2024 1 commit
  20. 21 Feb, 2024 1 commit
    • Arthur's avatar
      [ `gemma`] Adds support for Gemma 馃拵 (#29167) · 594c1277
      Arthur authored
      * inital commit
      
      * update
      
      * update conversion checkpoint
      
      * update conversion script
      
      * nits
      
      * some fixes
      
      * nits
      
      * merge
      
      * fix permute
      
      * nits
      
      * fix
      
      * nits
      
      * nits
      
      * nits
      
      * fix rope
      
      * fix both rope
      
      * nites
      
      * style
      
      * make sure flax works
      
      * fix flax init code
      
      * fix foward
      
      * nits
      
      * print flax generation out
      
      * current code
      
      * nits
      
      * SIIIIIIIIIIIIIIIIIII
      
      * update
      
      * add new tokenizer
      
      * correct fast tokenizer
      
      * fix conversion
      
      * more comments
      
      * fix modeling and conversion
      
      * nits and nits
      
      * nits testing
      
      * add some tokenization tests
      
      * add some edge cases
      
      * add slow tests and fix them
      
      * fixup
      
      * fix copies for modeling
      
      * fix copies
      
      * add 7B slow tests
      
      * fix
      
      * fix
      
      * fix tests
      
      * make tokenizer cis go green
      
      * styling
      
      * last tokenizer nits
      
      * update jax tests
      
      * fix flax for 7b
      
      * add jit testing 馃
      
      
      
      * cleanups
      
      * isolated nit, inv_freq for rotary_emb.inv_freq
      
      * propagate to jax
      
      * Apply suggestions from code review
      Co-authored-by: default avatarSanchit Gandhi <93869735+sanchit-gandhi@users.noreply.github.com>
      
      * adjust test
      
      * fix conversion script
      
      * change name
      
      * correct file names
      
      * update conversion script
      
      * Fix bos and eos token ids in the model configuration (#3)
      
      * update modelling
      
      * update conversion script
      
      * add static cache for gemma
      
      * fix sdpa generate
      
      * fix batched
      
      * multiple fixes
      
      * fix FA2
      
      * final fix
      
      * Rename a few missing strings and filenames (#4)
      
      * merge with upstream main
      
      * fix copies
      
      * fix copies
      
      * fix fixup
      
      * fix fixup
      
      * fix
      
      * fix
      
      * final tests
      
      * fix fx gemma tests
      
      * fix fx bf16/fp16 tests
      
      * update slow fx tests
      
      * fx slow tests: one logits, one generation
      
      * move jit test standalone
      
      * Apply suggestions from code review
      
      * nits
      
      * tokenizer updates
      
      * more tokenization updates: custom GemmaSentencepieceExtrator
      
      * style
      
      * Update src/transformers/cache_utils.py
      
      * Update src/transformers/models/gemma/__init__.py
      
      * Update tests/models/gemma/test_modeling_flax_gemma.py
      
      * small nits
      
      * style
      
      * update tokenization test
      
      * fix the rotary embedding
      
      * with style
      
      * fix slow tests
      
      * WARNING this commit might be very important for precisions
      
      * Update tests/models/gemma/test_modeling_flax_gemma.py
      
      * Update src/transformers/models/gemma/configuration_gemma.py
      Co-authored-by: default avatarLysandre Debut <hi@lysand.re>
      
      * Update src/transformers/models/gemma/modeling_flax_gemma.py
      Co-authored-by: default avatarLysandre Debut <hi@lysand.re>
      
      * small nits here and there!
      
      * forgotten nit
      
      * remove on the fly computation of inv_freq
      
      * revert previous change, let's be safe and for now re-compute freq cis to make sure it's in float
      
      * Apply suggestions from code review
      Co-authored-by: default avatarPedro Cuenca <pedro@huggingface.co>
      
      * Update src/transformers/models/gemma/convert_gemma_weights_to_hf.py
      Co-authored-by: default avatarPedro Cuenca <pedro@huggingface.co>
      
      * Update src/transformers/models/gemma/convert_gemma_weights_to_hf.py
      Co-authored-by: default avatarPedro Cuenca <pedro@huggingface.co>
      
      * Update tests/models/gemma/test_modeling_gemma.py
      Co-authored-by: default avatarPedro Cuenca <pedro@huggingface.co>
      
      * Update tests/models/gemma/test_modeling_gemma.py
      Co-authored-by: default avatarPedro Cuenca <pedro@huggingface.co>
      
      * Update tests/models/gemma/test_modeling_gemma.py
      Co-authored-by: default avatarPedro Cuenca <pedro@huggingface.co>
      
      * Update tests/models/gemma/test_modeling_flax_gemma.py
      Co-authored-by: default avatarPedro Cuenca <pedro@huggingface.co>
      
      * Update tests/models/gemma/test_modeling_gemma.py
      Co-authored-by: default avatarPedro Cuenca <pedro@huggingface.co>
      
      * Update tests/models/gemma/test_modeling_gemma.py
      Co-authored-by: default avatarPedro Cuenca <pedro@huggingface.co>
      
      * Update tests/models/gemma/test_tokenization_gemma.py
      Co-authored-by: default avatarPedro Cuenca <pedro@huggingface.co>
      
      * Update tests/models/gemma/test_tokenization_gemma.py
      Co-authored-by: default avatarPedro Cuenca <pedro@huggingface.co>
      
      * Update tests/models/gemma/test_tokenization_gemma.py
      Co-authored-by: default avatarPedro Cuenca <pedro@huggingface.co>
      
      * Update tests/models/gemma/test_tokenization_gemma.py
      Co-authored-by: default avatarPedro Cuenca <pedro@huggingface.co>
      
      * Update tests/models/gemma/test_modeling_gemma.py
      Co-authored-by: default avatarPedro Cuenca <pedro@huggingface.co>
      
      * Update tests/models/gemma/test_modeling_gemma.py
      Co-authored-by: default avatarPedro Cuenca <pedro@huggingface.co>
      
      * Update tests/models/gemma/test_modeling_gemma.py
      Co-authored-by: default avatarPedro Cuenca <pedro@huggingface.co>
      
      * Update tests/models/gemma/test_modeling_gemma.py
      Co-authored-by: default avatarPedro Cuenca <pedro@huggingface.co>
      
      * Update tests/models/gemma/test_modeling_gemma.py
      Co-authored-by: default avatarPedro Cuenca <pedro@huggingface.co>
      
      * nit conversion script link
      
      * fix some tests
      
      * add not doctest and pr doctest
      
      * repo consistency
      
      * fix last CIs 馃殌
      
      
      
      * update all readmes
      
      ---------
      Co-authored-by: default avataryounesbelkada <younesbelkada@gmail.com>
      Co-authored-by: default avatarSanchit Gandhi <93869735+sanchit-gandhi@users.noreply.github.com>
      Co-authored-by: default avatarPedro Cuenca <pedro@huggingface.co>
      Co-authored-by: default avatarYounes Belkada <49240599+younesbelkada@users.noreply.github.com>
      Co-authored-by: default avatarsanchit-gandhi <sanchit@huggingface.co>
      Co-authored-by: default avatarLysandre Debut <hi@lysand.re>
      594c1277
  21. 19 Feb, 2024 1 commit
    • Winton Davies's avatar
      fix the post-processing link (#29091) · 593230f0
      Winton Davies authored
      The link in evaluation was missing a hyphen between post and processing. I fixed this, for English only. Someone with the ability to do a global search/replace should fix the other languages (if indeed they have this issue)/
      593230f0
  22. 16 Feb, 2024 1 commit
  23. 14 Feb, 2024 3 commits
  24. 12 Feb, 2024 2 commits
  25. 08 Feb, 2024 1 commit
  26. 06 Feb, 2024 2 commits
  27. 02 Feb, 2024 1 commit
    • Klaus Hipp's avatar
      [Docs] Fix spelling and grammar mistakes (#28825) · 721ee783
      Klaus Hipp authored
      * Fix typos and grammar mistakes in docs and examples
      
      * Fix typos in docstrings and comments
      
      * Fix spelling of `tokenizer` in model tests
      
      * Remove erroneous spaces in decorators
      
      * Remove extra spaces in Markdown link texts
      721ee783
  28. 01 Feb, 2024 1 commit
    • JB (Don)'s avatar
      Adding [T5/MT5/UMT5]ForTokenClassification (#28443) · 0d26abdd
      JB (Don) authored
      * Adding [T5/MT5/UMT5]ForTokenClassification
      
      * Add auto mappings for T5ForTokenClassification and variants
      
      * Adding ForTokenClassification to the list of models
      
      * Adding attention_mask param to the T5ForTokenClassification test
      
      * Remove outdated comment in test
      
      * Adding EncoderOnly and Token Classification tests for MT5 and UMT5
      
      * Fix typo in umt5 string
      
      * Add tests for all the existing MT5 models
      
      * Fix wrong comment in dependency_versions_table
      
      * Reverting change to common test for _keys_to_ignore_on_load_missing
      
      The test is correctly picking up redundant keys in _keys_to_ignore_on_load_missing.
      
      * Removing _keys_to_ignore_on_missing from MT5 since the key is not used in the model
      
      * Add fix-copies to MT5ModelTest
      0d26abdd
  29. 26 Jan, 2024 1 commit
  30. 25 Jan, 2024 2 commits
    • Yusuf's avatar
      Update question_answering.md (#28694) · 24f1a00e
      Yusuf authored
      fix typo:
      
      from:
      
       "model = TFAutoModelForQuestionAnswering("distilbert-base-uncased")"
      
      to:
      model = TFAutoModelForQuestionAnswering.from_pretrained("distilbert-base-uncased")
      24f1a00e
    • NielsRogge's avatar
      Add Depth Anything (#28654) · 963db81a
      NielsRogge authored
      * First draft
      
      * More improvements
      
      * More improvements
      
      * More improvements
      
      * More improvements
      
      * Add docs
      
      * Remove file
      
      * Add copied from
      
      * Address comments
      
      * Address comments
      
      * Address comments
      
      * Fix style
      
      * Update docs
      
      * Convert all checkpoints, add integration test
      
      * Rename checkpoints
      
      * Add pretrained backbone attributes
      
      * Fix default config
      
      * Address comment
      
      * Add figure to docs
      
      * Fix bug thanks to @xenova
      
      * Update conversion script
      
      * Fix integration test
      963db81a