- 16 Sep, 2022 1 commit
-
-
Michael Benayoun authored
* Support for ConvNext * Support for Wav2Vec2 * Support for Resnet * Fix small issue in test_modeling_convnext
-
- 15 Sep, 2022 3 commits
-
-
Shijie Wu authored
-
Nicolas Patry authored
* Fixing OPT fast tokenizer option. * Remove dependency on `pt`. * Move it to GPT2 tokenization tests. * Added a few tests.
-
Yih-Dar authored
* Fix test_save_load for TFViTMAEModelTest Co-authored-by:ydshieh <ydshieh@users.noreply.github.com>
-
- 14 Sep, 2022 8 commits
-
-
SaulLu authored
-
Sylvain Gugger authored
-
Shinya Otani authored
* add gpt-neox-japanese model and tokenizer as new model * Correction to PR's comment for GPT NeoX Japanese - Fix to be able to use gpu - Add comment # Copied... at the top of RotaryEmbedding - Implement nn.Linear instead of original linear class - Add generation test under @slow * fix bias treatment for gpt-neox-japanese * Modidy gpt-neox-japanese following PR - add doc for bias_dropout_add - style change following a PR comment * add document for gpt-neox-japanese * remove unused import from gpt-neox-japanese * fix README for gpt-neox-japanese
-
Sylvain Gugger authored
-
Sylvain Gugger authored
-
Yih-Dar authored
* Skip test_torchscript_output_attentions for PegasusXModelTest * fix test_inference_no_head * fix test_inference_head * fix test_seq_to_seq_generation Co-authored-by:ydshieh <ydshieh@users.noreply.github.com>
-
Sylvain Gugger authored
* Make AutoProcessor a magic loading class for all modalities * Quality
-
NielsRogge authored
* First draft * More improvements * Improve model, add custom CUDA code * Import torch before * Add script that imports custom layer * Add everything in new ops directory * Import custom layer in modeling file * Fix ARCHIVE_MAP typo * Creating the custom kernel on the fly. * Import custom layer in modeling file * More improvements * Fix CUDA loading * More improvements * Improve conversion script * Improve conversion script * Make it work until encoder_outputs * Make forward pass work * More improvements * Make logits match original implementation * Make implementation also support single_scale model * Add support for single_scale and dilation checkpoint * Add support for with_box_refine model * Support also two stage model * Improve tests * Fix more tests * Make more tests pass * Upload all models to the hub * Clean up some code * Improve decoder outputs * Rename intermediate hidden states and reference points * Improve model outputs * Move tests to dedicated folder * Improve model outputs * Fix retain_grad test * Improve docs * Clean up and make test_initialization pass * Improve variable names * Add copied from statements * Improve docs * Fix style * Improve docs * Improve docs, move tests to model folder * Fix rebase * Remove DetrForSegmentation from auto mapping * Apply suggestions from code review * Improve variable names and docstrings * Apply some more suggestions from code review * Apply suggestion from code review * better docs and variables names * hint to num_queries and two_stage confusion * remove asserts and code refactor * add exception if two_stage is True and with_box_refine is False * use f-strings * Improve docs and variable names * Fix code quality * Fix rebase * Add require_torch_gpu decorator * Add pip install ninja to CI jobs * Apply suggestion of @sgugger * Remove DeformableDetrForObjectDetection from auto mapping * Remove DeformableDetrModel from auto mapping * Add model to toctree * Add model back to mappings, skip model in pipeline tests * Apply @sgugger's suggestion * Fix imports in the init * Fix copies * Add CPU implementation * Comment out GPU function * Undo previous change * Apply more suggestions * Remove require_torch_gpu annotator * Fix quality * Add logger.info * Fix logger * Fix variable names * Fix initializaztion * Add missing initialization * Update checkpoint name * Add model to doc tests * Add CPU/GPU equivalence test * Add Deformable DETR to pipeline tests * Skip model for object detection pipeline Co-authored-by:
Nicolas Patry <patry.nicolas@protonmail.com> Co-authored-by:
Nouamane Tazi <nouamane98@gmail.com> Co-authored-by:
Sylvain Gugger <Sylvain.gugger@gmail.com>
-
- 13 Sep, 2022 1 commit
-
-
Yih-Dar authored
Co-authored-by:ydshieh <ydshieh@users.noreply.github.com>
-
- 12 Sep, 2022 3 commits
-
-
Joao Gante authored
-
Matt authored
* Use int64 throughout TFLongFormer * make style * Do some more fixed casting in TFLongFormer * Fix some wonky "is None" conditionals * Cast all the dtypes, salt the earth * Fix copies to TFLED as well and do some casting there * dtype fix in TFLongformer test * Make fixup * Expand tolerances on the LED tests too (I think this is a TF32 thing) * Expand test tolerances for LED a tiny bit (probably a Tensorfloat thing again)
-
Yih-Dar authored
Co-authored-by:ydshieh <ydshieh@users.noreply.github.com>
-
- 10 Sep, 2022 1 commit
-
-
Joao Gante authored
-
- 09 Sep, 2022 2 commits
-
-
Matt authored
* Fix train_step and test_step, correctly enable CLIP fit test * Stop using get_args on older Python versions * Don't use get_origin either * UnionType is actually even newer, don't use that either * Apply the same fix to test_loss_computation * Just realized I was accidentally skipping a bunch of tests! * Fix test_loss_computation for models without separable labels * Fix scalar losses in test_step and train_step * Stop committing your breakpoints * Fix Swin loss shape * Fix Tapas loss shape * Shape fixes for TAPAS, DeIT, HuBERT and ViTMAE * Add loss computation to TFMobileBertForPreTraining * make fixup and move copied from statement * make fixup and move copied from statement * Correct copied from * Add labels and next_sentence_label inputs to TFMobileBERT * Make sure total_loss is always defined * Update tests/test_modeling_tf_common.py Co-authored-by:
amyeroberts <22614925+amyeroberts@users.noreply.github.com> * Fix copied from * Ensure CTC models get labels in tests * Ensure CTC models get labels in tests * Fix tests for vit_mae * Fix tests for vit_mae * Fix tests for vit_mae * Reduce batch size for wav2vec2 testing because it was causing OOM * Skip some TAPAS tests that are failing * Skip a failing HuBERT test * make style * Fix mobilebertforpretraining test * Skip Wav2Vec2 tests that use huge amounts of mem * Skip keras_fit for Wav2Vec2 as well Co-authored-by:
amyeroberts <22614925+amyeroberts@users.noreply.github.com>
-
HuYong authored
* add_ernie * remove Tokenizer in ernie * polish code * format code style * polish code * fix style * update doc * make fix-copies * change model name * change model name * fix dependency * add more copied from * rename ErnieLMHeadModel to ErnieForCausalLM do not expose ErnieLayer update doc * fix * make style * polish code * polish code * fix * fix * fix * fix * fix * final fix Co-authored-by:ydshieh <ydshieh@users.noreply.github.com>
-
- 08 Sep, 2022 1 commit
-
-
NielsRogge authored
* First draft * Improve conversion script * Make vision encoder work * More improvements * Improve conversion script * Fix quality * Add MultiframeIntegrationTransformer * More improvements * Make MiT output work * Fix quality * Add prompts generator * Add tests * Fix some tests * Fix some more tests * Fix more tests * Improve conversion script * Fix model outputs * Fix more tests * Add XClipProcessor * Use processor in conversion script * Fix integration test * Update README, fix docs * Fix all tests * Add MIT output to XClipOutput * Create better variable names * Rename XClip to XCLIP * Extend conversion script * Add support for large models * Add support for 16 frame models * Add another model' * Fix module issue * Apply suggestions from code review * Add figure to docs * Fix CLIPProcessor issue * Apply suggestions from code review * Delete file * Convert more checkpoints * Convert last checkpoint * Update nielsr to microsoft
-
- 07 Sep, 2022 2 commits
-
-
Ankur Goyal authored
* [WIP] Skeleton of VisualQuestionAnweringPipeline extended to support LayoutLM-like models * Fixup * Use the full encoding * Basic refactoring to DocumentQuestionAnsweringPipeline * Cleanup * Improve args, docs, and implement preprocessing * Integrate OCR * Refactor question_answering pipeline * Use refactored QA code in the document qa pipeline * Fix tests * Some small cleanups * Use a string type annotation for Image.Image * Update encoding with image features * Wire through the basic docs * Handle invalid response * Handle empty word_boxes properly * Docstring fix * Integrate Donut model * Fixup * Incorporate comments * Address comments * Initial incorporation of tests * Address Comments * Change assert to ValueError * Comments * Wrap `score` in float to make it JSON serializable * Incorporate AutoModeLForDocumentQuestionAnswering changes * Fixup * Rename postprocess function * Fix auto import * Applying comments * Improve docs * Remove extra assets and add copyright * Address comments Co-authored-by:Ankur Goyal <ankur@impira.com>
-
Yih-Dar authored
* remvoe _create_and_check_torch_fx_tracing defined in specific model test files Co-authored-by:ydshieh <ydshieh@users.noreply.github.com>
-
- 06 Sep, 2022 2 commits
-
-
Sylvain Gugger authored
* Further reduce the number of alls to head for cached models/tokenizers/pipelines * Fix tests * Address review comments
-
Yih-Dar authored
Co-authored-by:ydshieh <ydshieh@users.noreply.github.com>
-
- 05 Sep, 2022 1 commit
-
-
Patrick von Platen authored
* add first generation tutorial * [Pegasus X] correct naming * [Generation] Remove
-
- 02 Sep, 2022 1 commit
-
-
Jason Phang authored
* PegasusX Initial commit * rename * pegasus X implementation * pegx update * pegx fix * pegasus-x fixes * pegx updates * cleanup * cleanup * cleanup * tests * stylefixes * Documentation update * Model hub fix * cleanup * update * update * testfix * Check fix * tweaks for merging * style * style * updates for pr * style * change pegasus-x repo
-
- 01 Sep, 2022 1 commit
-
-
Sayak Paul authored
* initial implementation. * add: working model till image classification. * add: initial implementation that passes intg tests. Co-authored-by:
Amy <aeroberts4444@gmail.com> * chore: formatting. * add: tests (still breaking because of config mismatch). Coo-authored-by:
Yih <2521628+ydshieh@users.noreply.github.com> * add: corrected tests and remaning changes. * fix code style and repo consistency. * address PR comments. * address Amy's comments. * chore: remove from_pt argument. * chore: add full-stop. * fix: TFLite model conversion in the doc. * Update src/transformers/models/mobilevit/modeling_tf_mobilevit.py Co-authored-by:
Sylvain Gugger <35901082+sgugger@users.noreply.github.com> * Update src/transformers/models/mobilevit/modeling_tf_mobilevit.py Co-authored-by:
Sylvain Gugger <35901082+sgugger@users.noreply.github.com> * Update src/transformers/models/mobilevit/modeling_tf_mobilevit.py Co-authored-by:
Sylvain Gugger <35901082+sgugger@users.noreply.github.com> * Update src/transformers/models/mobilevit/modeling_tf_mobilevit.py Co-authored-by:
Sylvain Gugger <35901082+sgugger@users.noreply.github.com> * Update src/transformers/models/mobilevit/modeling_tf_mobilevit.py Co-authored-by:
Sylvain Gugger <35901082+sgugger@users.noreply.github.com> * apply formatting. * chore: remove comments from the example block. * remove identation in the example. Co-authored-by:
Amy <aeroberts4444@gmail.com> Co-authored-by:
Sylvain Gugger <35901082+sgugger@users.noreply.github.com>
-
- 31 Aug, 2022 2 commits
-
-
NielsRogge authored
* Add num_channels attribute * Fix code quality Co-authored-by:Niels Rogge <nielsrogge@Nielss-MacBook-Pro.local>
-
Ankur Goyal authored
* Add LayoutLMForQuestionAnswering model * Fix output * Remove TF TODOs * Add test cases * Add docs * TF implementation * Fix PT/TF equivalence * Fix loss * make fixup * Fix up documentation code examples * Fix up documentation examples + test them * Remove LayoutLMForQuestionAnswering from the auto mapping * Docstrings * Add better docstrings * Undo whitespace changes * Update tokenizers in comments * Fixup code and remove `from_pt=True` * Fix tests * Revert some unexpected docstring changes * Fix tests by overriding _prepare_for_class Co-authored-by:Ankur Goyal <ankur@impira.com>
-
- 30 Aug, 2022 3 commits
-
-
anthony2261 authored
-
amyeroberts authored
* Run tests if skip condition not met * Update comment - remove outdated ref to TF 2.8
-
Christoffer Koo 脴hrstr酶m authored
Co-authored-by:
Esben Toke Christensen <esben.christensen@visma.com> Co-authored-by:
Lasse Reedtz <lasse.reedtz@visma.com> Co-authored-by:
amyeroberts <22614925+amyeroberts@users.noreply.github.com> Co-authored-by:
Joao Gante <joaofranciscocardosogante@gmail.com>
-
- 29 Aug, 2022 1 commit
-
-
Yih-Dar authored
Co-authored-by:ydshieh <ydshieh@users.noreply.github.com>
-
- 26 Aug, 2022 2 commits
-
-
Patrick von Platen authored
[Wav2vec2 + LM Test] Improve wav2vec2 with lm tests and make torch version dependent for now (#18749) * add first generation tutorial * remove generation * make version dependent expected values * Apply suggestions from code review * Update tests/models/wav2vec2_with_lm/test_processor_wav2vec2_with_lm.py * fix typo
-
Patrick von Platen authored
* add first generation tutorial * VisionEnocderDecoder gradient checkpointing * remove generation * add tests
-
- 24 Aug, 2022 2 commits
-
-
SaulLu authored
add warning to let the user know that the `__call__` method is faster than `encode` + `pad` for a fast tokenizer (#18693) * add warning to let the user know that the method is slower that for a fast tokenizer * user warnings * fix layoutlmv2 * fix layout* * change warnings into logger.warning
-
Daniel Stancl authored
* Add TFXGLM models * Add todo: self.supports_xla_generation = False Co-authored-by:
Daniel Stancl <stancld@Daniels-MacBook-Pro.local> Co-authored-by:
Daniel Stancl <stancld@daniels-mbp.home> Co-authored-by:
Joao Gante <joaofranciscocardosogante@gmail.com> Co-authored-by:
Daniel <daniel.stancl@rossum.ai> Co-authored-by:
Patrick von Platen <patrick.v.platen@gmail.com>
-
- 22 Aug, 2022 1 commit
-
-
tgadeliya authored
-
- 12 Aug, 2022 2 commits
-
-
Niklas Muennighoff authored
* Update BLOOM parameter counts * Update BLOOM parameter counts
-
NielsRogge authored
* First draft * Improve script * Update script * Make conversion work * Add final_layer_norm attribute to Swin's config * Add DonutProcessor * Convert more models * Improve feature extractor and convert base models * Fix bug * Improve integration tests * Improve integration tests and add model to README * Add doc test * Add feature extractor to docs * Fix integration tests * Remove register_buffer * Fix toctree and add missing attribute * Add DonutSwin * Make conversion script work * Improve conversion script * Address comment * Fix bug * Fix another bug * Remove deprecated method from docs * Make Swin and Swinv2 untouched * Fix code examples * Fix processor * Update model_type to donut-swin * Add feature extractor tests, add token2json method, improve feature extractor * Fix failing tests, remove integration test * Add do_thumbnail for consistency * Improve code examples * Add code example for document parsing * Add DonutSwin to MODEL_NAMES_MAPPING * Add model to appropriate place in toctree * Update namespace to appropriate organization Co-authored-by:Niels Rogge <nielsrogge@Nielss-MacBook-Pro.local>
-