Unverified Commit ef91a2d1 authored by amyeroberts's avatar amyeroberts Committed by GitHub
Browse files

Run tests if skip condition not met (#18764)

* Run tests if skip condition not met

* Update comment - remove outdated ref to TF 2.8
parent de8548eb
...@@ -145,10 +145,10 @@ class TFConvNextModelTest(TFModelTesterMixin, unittest.TestCase): ...@@ -145,10 +145,10 @@ class TFConvNextModelTest(TFModelTesterMixin, unittest.TestCase):
@unittest.skipIf( @unittest.skipIf(
not is_tf_available() or len(tf.config.list_physical_devices("GPU")) == 0, not is_tf_available() or len(tf.config.list_physical_devices("GPU")) == 0,
reason="TF (<=2.8) does not support backprop for grouped convolutions on CPU.", reason="TF does not support backprop for grouped convolutions on CPU.",
) )
def test_keras_fit(self): def test_keras_fit(self):
pass super().test_keras_fit()
@unittest.skip(reason="ConvNext does not support input and output embeddings") @unittest.skip(reason="ConvNext does not support input and output embeddings")
def test_model_common_attributes(self): def test_model_common_attributes(self):
...@@ -176,7 +176,7 @@ class TFConvNextModelTest(TFModelTesterMixin, unittest.TestCase): ...@@ -176,7 +176,7 @@ class TFConvNextModelTest(TFModelTesterMixin, unittest.TestCase):
@unittest.skipIf( @unittest.skipIf(
not is_tf_available() or len(tf.config.list_physical_devices("GPU")) == 0, not is_tf_available() or len(tf.config.list_physical_devices("GPU")) == 0,
reason="TF (<=2.8) does not support backprop for grouped convolutions on CPU.", reason="TF does not support backprop for grouped convolutions on CPU.",
) )
def test_dataset_conversion(self): def test_dataset_conversion(self):
super().test_dataset_conversion() super().test_dataset_conversion()
......
...@@ -138,10 +138,10 @@ class TFRegNetModelTest(TFModelTesterMixin, unittest.TestCase): ...@@ -138,10 +138,10 @@ class TFRegNetModelTest(TFModelTesterMixin, unittest.TestCase):
@unittest.skipIf( @unittest.skipIf(
not is_tf_available() or len(tf.config.list_physical_devices("GPU")) == 0, not is_tf_available() or len(tf.config.list_physical_devices("GPU")) == 0,
reason="TF (<=2.8) does not support backprop for grouped convolutions on CPU.", reason="TF does not support backprop for grouped convolutions on CPU.",
) )
def test_keras_fit(self): def test_keras_fit(self):
pass super().test_keras_fit()
@unittest.skip(reason="RegNet does not support input and output embeddings") @unittest.skip(reason="RegNet does not support input and output embeddings")
def test_model_common_attributes(self): def test_model_common_attributes(self):
......
...@@ -332,7 +332,7 @@ class TFSegformerModelTest(TFModelTesterMixin, unittest.TestCase): ...@@ -332,7 +332,7 @@ class TFSegformerModelTest(TFModelTesterMixin, unittest.TestCase):
@unittest.skipIf( @unittest.skipIf(
not is_tf_available() or len(tf.config.list_physical_devices("GPU")) == 0, not is_tf_available() or len(tf.config.list_physical_devices("GPU")) == 0,
reason="TF (<=2.8) does not support backprop for grouped convolutions on CPU.", reason="TF does not support backprop for grouped convolutions on CPU.",
) )
def test_dataset_conversion(self): def test_dataset_conversion(self):
super().test_dataset_conversion() super().test_dataset_conversion()
...@@ -342,7 +342,7 @@ class TFSegformerModelTest(TFModelTesterMixin, unittest.TestCase): ...@@ -342,7 +342,7 @@ class TFSegformerModelTest(TFModelTesterMixin, unittest.TestCase):
@unittest.skipIf( @unittest.skipIf(
not is_tf_available() or len(tf.config.list_physical_devices("GPU")) == 0, not is_tf_available() or len(tf.config.list_physical_devices("GPU")) == 0,
reason="TF (<=2.8) does not support backprop for grouped convolutions on CPU.", reason="TF does not support backprop for grouped convolutions on CPU.",
) )
def test_keras_fit(self): def test_keras_fit(self):
config, _ = self.model_tester.prepare_config_and_inputs_for_common() config, _ = self.model_tester.prepare_config_and_inputs_for_common()
......
Markdown is supported
0% or .
You are about to add 0 people to the discussion. Proceed with caution.
Finish editing this message first!
Please register or to comment