"...git@developer.sourcefind.cn:chenpangpang/transformers.git" did not exist on "e1638dce16dfe2854bf8277deafd1fc2b5dc7c63"
Commit e1b2949a authored by drc10723's avatar drc10723 Committed by Victor SANH
Browse files

DistillBert Documentation Code Example fixes

parent e2ae9c0b
...@@ -649,7 +649,7 @@ class DistilBertForQuestionAnswering(DistilBertPreTrainedModel): ...@@ -649,7 +649,7 @@ class DistilBertForQuestionAnswering(DistilBertPreTrainedModel):
start_positions = torch.tensor([1]) start_positions = torch.tensor([1])
end_positions = torch.tensor([3]) end_positions = torch.tensor([3])
outputs = model(input_ids, start_positions=start_positions, end_positions=end_positions) outputs = model(input_ids, start_positions=start_positions, end_positions=end_positions)
loss, start_scores, end_scores = outputs[:2] loss, start_scores, end_scores = outputs[:3]
""" """
def __init__(self, config): def __init__(self, config):
......
...@@ -603,7 +603,7 @@ class TFDistilBertForMaskedLM(TFDistilBertPreTrainedModel): ...@@ -603,7 +603,7 @@ class TFDistilBertForMaskedLM(TFDistilBertPreTrainedModel):
tokenizer = DistilBertTokenizer.from_pretrained('distilbert-base-uncased') tokenizer = DistilBertTokenizer.from_pretrained('distilbert-base-uncased')
model = TFDistilBertForMaskedLM.from_pretrained('distilbert-base-uncased') model = TFDistilBertForMaskedLM.from_pretrained('distilbert-base-uncased')
input_ids = tf.constant(tokenizer.encode("Hello, my dog is cute"))[None, :] # Batch size 1 input_ids = tf.constant(tokenizer.encode("Hello, my dog is cute"))[None, :] # Batch size 1
outputs = model(input_ids, masked_lm_labels=input_ids) outputs = model(input_ids)
prediction_scores = outputs[0] prediction_scores = outputs[0]
""" """
...@@ -715,9 +715,7 @@ class TFDistilBertForQuestionAnswering(TFDistilBertPreTrainedModel): ...@@ -715,9 +715,7 @@ class TFDistilBertForQuestionAnswering(TFDistilBertPreTrainedModel):
tokenizer = DistilBertTokenizer.from_pretrained('distilbert-base-uncased') tokenizer = DistilBertTokenizer.from_pretrained('distilbert-base-uncased')
model = TFDistilBertForQuestionAnswering.from_pretrained('distilbert-base-uncased') model = TFDistilBertForQuestionAnswering.from_pretrained('distilbert-base-uncased')
input_ids = tf.constant(tokenizer.encode("Hello, my dog is cute"))[None, :] # Batch size 1 input_ids = tf.constant(tokenizer.encode("Hello, my dog is cute"))[None, :] # Batch size 1
start_positions = tf.constant([1]) outputs = model(input_ids)
end_positions = tf.constant([3])
outputs = model(input_ids, start_positions=start_positions, end_positions=end_positions)
start_scores, end_scores = outputs[:2] start_scores, end_scores = outputs[:2]
""" """
......
Markdown is supported
0% or .
You are about to add 0 people to the discussion. Proceed with caution.
Finish editing this message first!
Please register or to comment