Skip to content
GitLab
Menu
Projects
Groups
Snippets
Loading...
Help
Help
Support
Community forum
Keyboard shortcuts
?
Submit feedback
Contribute to GitLab
Sign in / Register
Toggle navigation
Menu
Open sidebar
chenpangpang
transformers
Commits
e1b2949a
Commit
e1b2949a
authored
Oct 03, 2019
by
drc10723
Committed by
Victor SANH
Oct 03, 2019
Browse files
DistillBert Documentation Code Example fixes
parent
e2ae9c0b
Changes
2
Hide whitespace changes
Inline
Side-by-side
Showing
2 changed files
with
3 additions
and
5 deletions
+3
-5
transformers/modeling_distilbert.py
transformers/modeling_distilbert.py
+1
-1
transformers/modeling_tf_distilbert.py
transformers/modeling_tf_distilbert.py
+2
-4
No files found.
transformers/modeling_distilbert.py
View file @
e1b2949a
...
...
@@ -649,7 +649,7 @@ class DistilBertForQuestionAnswering(DistilBertPreTrainedModel):
start_positions = torch.tensor([1])
end_positions = torch.tensor([3])
outputs = model(input_ids, start_positions=start_positions, end_positions=end_positions)
loss, start_scores, end_scores = outputs[:
2
]
loss, start_scores, end_scores = outputs[:
3
]
"""
def
__init__
(
self
,
config
):
...
...
transformers/modeling_tf_distilbert.py
View file @
e1b2949a
...
...
@@ -603,7 +603,7 @@ class TFDistilBertForMaskedLM(TFDistilBertPreTrainedModel):
tokenizer = DistilBertTokenizer.from_pretrained('distilbert-base-uncased')
model = TFDistilBertForMaskedLM.from_pretrained('distilbert-base-uncased')
input_ids = tf.constant(tokenizer.encode("Hello, my dog is cute"))[None, :] # Batch size 1
outputs = model(input_ids
, masked_lm_labels=input_ids
)
outputs = model(input_ids)
prediction_scores = outputs[0]
"""
...
...
@@ -715,9 +715,7 @@ class TFDistilBertForQuestionAnswering(TFDistilBertPreTrainedModel):
tokenizer = DistilBertTokenizer.from_pretrained('distilbert-base-uncased')
model = TFDistilBertForQuestionAnswering.from_pretrained('distilbert-base-uncased')
input_ids = tf.constant(tokenizer.encode("Hello, my dog is cute"))[None, :] # Batch size 1
start_positions = tf.constant([1])
end_positions = tf.constant([3])
outputs = model(input_ids, start_positions=start_positions, end_positions=end_positions)
outputs = model(input_ids)
start_scores, end_scores = outputs[:2]
"""
...
...
Write
Preview
Markdown
is supported
0%
Try again
or
attach a new file
.
Attach a file
Cancel
You are about to add
0
people
to the discussion. Proceed with caution.
Finish editing this message first!
Cancel
Please
register
or
sign in
to comment